33 43310A00 Product Specification

POWER COLLECTION

Single-phase overexcitation rectifier

This single-phase overexcitation rectifiers specified below are designed to increase the attractive force, to reduce the attraction time of actuating solenoids, to reduce the coupling and disconnection times of clutches and brakes and to reduce the power consumption of clutches, brakes and actuating solenoids. All work must only be carried out by suitably qualified personnel. Make sure that no voltage is applied during connection. The specifications on the rating plate and the information provided in the circuit diagram or in the datasheet must be strictly observed.

Technical specifications

Type 33 433..	$10 \mathrm{A00}$
Rectifier type	full-wave rectifier with synchronous switched
Input voltage	$380-415 \mathrm{VAC} \pm 10 \%$
Frequency	$40-60 \mathrm{~Hz}$
Output voltage:	$338-370 \mathrm{VDC}$
Overexcitation	$40-240 \mathrm{VDC}$
Holding voltage adjustable at 50 Hz	Maximum output current: with overexcitation 3 ADC holding current $0.15-3 \mathrm{~s}$ Overexcitation time adjustable 400 ms Min. recovery time $15 \mathrm{~mA} / 400 \mathrm{VAC}$ potential separated Required relay output for powerless switching T4/400 V Fuse: Fine wire fuse 6.3×32 delayed $8-p o l e ~ p l u g ~ i n ~ s c r e w ~$ terminals, 2,5 mm Connection wire
Ambient temperature	$0-70^{\circ} \mathrm{C}$ see diagram 2 for derating
Protection as per EN 60529	IP 00

Specification subject to change without notice.
Please observe ordering data!

CE

EMC Directive 2004/108/EEC:

Compliance with the following standards is confirmed:
EN 50081-2 (Emission):
EN 55011 (VDE 0875, part 11, 1992)
Group 1, Class A conducted interference
Group 1, Class B radiated interference
EN 61000-6-2 (Immunity):
EN 61000-4-3 (1997) severity level 3
EN 61000-4-4 (1996) severity level 3
EN 61000-4-5 (1996) severity level 3

Low Voltage Directive 2006/95/EEC:

Compliance with the following standards is confirmed: HD 625.1 S1 (1996), (VDE 0110) insulation coordination, EN 60529 (1991) IP 54 external mounting

In order to increase the attractive force of actuating solenoids, the coil is overexcited during the overexcitation time applying a full wave rectified voltage. Afterwards, the rectifier changes over to the selected holding voltage, that shouldn't be higher than the specified nominal voltage of the solenoid. To lower the power consumption the nominal voltage of the solenoid should be not lower than the overexcitation voltage to achieve the nominal attractive force. The holding voltage can be adjusted depending of the dimensioning of the solenoid to a lower value than nominal. Owing to this power saving effect the switch off time will be reduced without the necessity of DC-side switching due to the lower magnetic energy. An integrated protective circuit allows DC side switching, thus reducing fall times, coupling times and disconnection times. The integrated compensation of input voltage changes provides a better stabilized output voltage. The rectifier is designed for powerless switching on and off. Due to their compact plastic housing, these rectifiers can be mounted on top hat rails in switch cabinets. Plug-in screw terminals ensure simple installation.

Machinery Directive 2006/42/EC:

These products are considered components in the sense of Machinery Directive
2006/42/EC and must not be put into service until the machinery in which they are incorporated has been declared in conformity with the provisions of the EC Directives.

ROHS

We hereby declare that the above-mentioned products comply with the requirements of the RoHS Directive 2011/65/EU on the restriction of the usage of certain hazardous substances in electrical and electronic equipment, assigned to equipment category 11.

Operating range

Diagram 1: Permissible maximum switch frequency
Rectifiers installed in switch cabinets with a minimum distance of 30 mm to adjacent units.

Formula 1: Permissible maximum switch frequency

f_{s} : max. switch frequency
$I_{\text {Hmax }}$: max. holding current
(see technical data)
I_{H} : adjusted holding current
ED: duty cycle

$$
f_{s}=\frac{I_{H \max }{ }^{2}-I_{H}^{2} * E D}{\left(I_{u}^{2}-I_{H \max }{ }^{2}\right) * t_{u}}
$$

lu: overexcitation current
tü: overexcitation time

Diagram 2: Admissible current load at ambient temperature (1)distance between 2 devices minimum 30 mm (2) distance between 2 devices below 30 mm

Factory settings

Type $\mathbf{3 3} \mathbf{4 3 3}$	Overexcitation time toE [s]	Holding voltage V [VDC]
$\mathbf{n y y}$	Nominal value	Nominal value
$\mathbf{1 0 A 0 0}$	1.2 ± 0.2	115 ± 3

Application hints

The technical data apply to rectifiers installed in switch cabinets with a minimum distance of 30 mm to adjacent units. In case the distance to other components is less than 30 mm , the power consumption must be reduced by 20%. The rectifier operates as bridge rectifier during the selected overexcitation time and subsequently reduces the output voltage to the selected holding voltage by phase shift control. It is crucial to ensure that the total power consumption does not exceed the rated power of the connected unit. The rectifier must only be used within the limits shown in diagram 1 in order to avoid overloading. The maximum switching frequency can be determined on the basis of formula 1. The over-excitation time should be lower than 80% of the duty cycle. Ongoing DC-side switching when operating in overexcitation mode isn't allowed due to a possible damage of the protection circuit. The holding voltage adjustment should be done with connected load.

Attention!

To use the powerless switching feature a potential free relais contact is necessary because the terminals are internal connected with the AC input.

Kendrion (Villingen) GmbH
Wilhelm-Binder-Straße 4-6
78048 Villingen-Schwenningen
Germany
Phone +49 77218771417
Fax $\quad+4977218771462$
E-Mail sales-villingen-ib@kendrion.com
www.kendrion.com

