KENDRION

Inhaltsverzeichnis

1.	Allgemeines	3
1.1	Vorwort	
1.2	Normen und Richtlinien	3
1.3	Einbauerklärung (nach Anhang II, Teil 1, Abschnitt B der EG-Maschinenrichtlinie 2006/42/EG)	3
1.4	EU-Konformitätserklärung	4
1.5	Haftung	4
2.	Produktbeschreibung	5
2.1	Wirkungsweise	5
2.2	Aufbau	5
3.	Montage	8
3.1	Mechanische Montage	8
3.2	Montage Zubehör	ç
3.3	Elektrischer Anschluss und Betrieb	10
3.3.1	Gleichstromanschluss	11
3.3.2	Wechselstromanschluss	11
3.3.3	El. Anschluss von Federdruck-Lammellenbremsen mit Mikroschalter (19)	13
3.4	Elektromagnetische Verträglichkeit	15
3.5	Inbetriebnahme	18
3.5.1	Umfang der Funktionsprüfungen	18
3.5.2	Manuelles Öffnen der Federdruck-Lamellenbremse	19
3.6	Einstellen des Nennmoments M2	19
4.	Wartung	20
4.1	Prüfungen, Service	20
4.2	Einstellen Mikroschalter (19) (nur bei Bremsen mit Mikroschalter (19))	22
4.3	Ersatzteile, Zubehör	23
5.	Lieferzustand, Transport und Lagerung	23
6.	Emissionen	24
6.1	Geräusche	24
6.2	Wärme	24
7.	Störungssuche	25
8.	Sicherheitshinweise	26
8.1	Bestimmungsgemäße Verwendung	26
8.2	Allgemeine Sicherheitshinweise	
8.2.1	Projektierung	27
8.2.2	Inbetriebnahme	27
8.2.3	Montage	27
8.2.4	Betrieb/Gebrauch	27
8.2.5	Wartung, Reparatur und Austausch	
8.3	Verwendete Zeichen für Sicherheitshinweise	
9.	Definitionen der verwendeten Ausdrücke	29
10.	Technische Daten	
11.	Artikelnummer und Typen- bzw. Komponentennummer	
12.	Fachwerkstätten für Reparaturarbeiten	34
13	Änderungshistorie	34

Dokumenteninformation:

Verfasser: Kendrion (Villingen) GmbH

Ersatz für Dokument: -

Dokumententyp: Originalbetriebsanleitung Dokumentenbezeichnung: BA 77 100..A00 Ausgabe: 13.03.2020

Ersetzt Ausgabe: 25.04.2016 Dokumentenstatus: Freigegeben

1. Allgemeines

1.1 Vorwort

Diese Betriebsanleitung erläutert die Funktionsweise und Leistungsmerkmale der Federdruck-Lamellenbremsen Typen 77 100..A00. Bei der Projektierung der Maschine (z.B. Motor) oder Anlage sowie bei Inbetriebnahme, Einsatz und Wartung der Federdruckbremse sind die in dieser Betriebsanleitung enthaltenen Sicherheitshinweise unbedingt zu beachten.

Bei Unklarheiten sind Drehmomente und deren Schwankung, Einbausituation, Verschleiß und Verschleißreserve, Schaltarbeit, Einlaufbedingungen, Öffnungsbereich (Lüftbereich), Umweltbedingungen und dergleichen im Voraus mit Kendrion (Villingen) abzustimmen. Federdruck-Lamellenbremsen sind nicht verwendungsfertige Produkte. Sie werden im Folgenden **Komponenten** genannt.

1.2 Normen und Richtlinien

Die Komponenten sind gebaut, geprüft und ausgelegt nach dem aktuellen Stand der Technik, insbesondere nach den Bestimmungen für elektromagnetische Geräte und Komponenten (DIN VDE 0580).

Federdruckbremsen fallen als "elektromagnetische Komponenten" zusätzlich in den Anwendungsbereich der Niederspannungsrichtlinie 2014/35/EU. Die Einhaltung der EMV-Richtlinie 2014/30/EU ist mit entsprechenden Schaltgeräten bzw. Ansteuerungen vom Anwender sicherzustellen.

1.3 Einbauerklärung (nach Anhang II, Teil 1, Abschnitt B der EG-Maschinenrichtlinie 2006/42/EG)

Hiermit erklären wir, dass die unten angeführten Produkte den folgenden grundlegenden Sicherheits- und Gesundheitsschutzanforderungen nach Anhang I der EG-Maschinenrichtlinie 2006/42/EG entsprechen:

Anhang I Allgemeine Grundsätze und Kapitel 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.5.1

Die Inbetriebnahme der unvollständigen Maschine ist solange untersagt, bis festgestellt wurde, dass die Maschine in die die unvollständige Maschine eingebaut werden soll, den Bestimmungen der EG-Maschinenrichtlinie 2006/42/EG entspricht. Die zur unvollständigen Maschine gehörenden speziellen technischen Unterlagen gemäß Anhang VII, Teil B der EG-Maschinenrichtlinie 2006/42/EG wurden erstellt. Der Hersteller verpflichtet sich, auf begründetes Verlangen einzelstaatlichen Stellen, die speziellen technischen Unterlagen zur unvollständigen Maschine elektronisch zu übermitteln.

Hersteller: Kendrion (Villingen) GmbH Dokumentations- Dominik Hettich

Wilhelm-Binder-Straße 4-6 **bevollmächtigter:** Kendrion (Villingen) GmbH 78048 Villingen-Schwenningen Wilhelm-Binder-Straße 4-6

78048 Villingen-Schwenningen

Angewendete harmonisierte Normen bzw. sonstige technische Normen und Vorschriften:

EN 60529 Schutzarten durch Gehäuse

DIN VDE 0580 Elektromagnetische Geräte und Komponenten

Produkt: Elektromagnetisch gelüftete Federdruck-Lamellenbremse

Typen: 77 10013A00 77 10016A00 77 10019A00 77 10024A00

77 10025A00 77 10029A00 77 10033A00

Kendrion (Villingen) GmbH Villingen, den 13.03.2020 i.V. Dominik Hettich

(Leiter Entwicklung)

1.4 EU-Konformitätserklärung

Diese EU-Konformitätserklärung gilt für Produkte, die mit einer CE- Kennzeichnung auf dem Typen- bzw. Leistungsschild gekennzeichnet sind.

Hiermit erklären wir, dass die nachstehend bezeichneten Produkte in Konzeption und Bauart sowie die in Verkehr gebrachten Ausführungen Bestimmungen der genannten Richtlinien 2014/35/EU (Niederspannungsrichtlinie) und 2011/65/EU (RoHS-Richtlinie) entsprechen. Gemäß der Richtlinie 2011/65/EU (RoHS-Richtlinie) sind die Produkte der Gerätekategorie 11 zugeordnet. Bei einer mit uns nicht abgestimmten Änderung des Produktes verliert diese Erklärung ihre Gültigkeit.

Hersteller: Kendrion (Villingen) GmbH Bevollmächtigter: Dominik Hettich

Wilhelm-Binder-Straße 4-6
78048 Villingen-Schwenningen
Wilhelm-Binder-Straße 4-6
78048 Villingen-Schwenningen

Angewendete harmonisierte Normen bzw. sonstige technische Normen und Vorschriften:

EN 60529 Schutzarten durch Gehäuse

DIN VDE 0580 Elektromagnetische Geräte und Komponenten

Produkt: Elektromagnetisch gelüftete Federdruck-Lamellenbremse

Typen: 77 10013A00 77 10016A00 77 10019A00 77 10024A00

77 10025A00 77 10029A00 77 10033A00

Dominik Hettich (Leiter Entwicklung)

1.5 Haftung

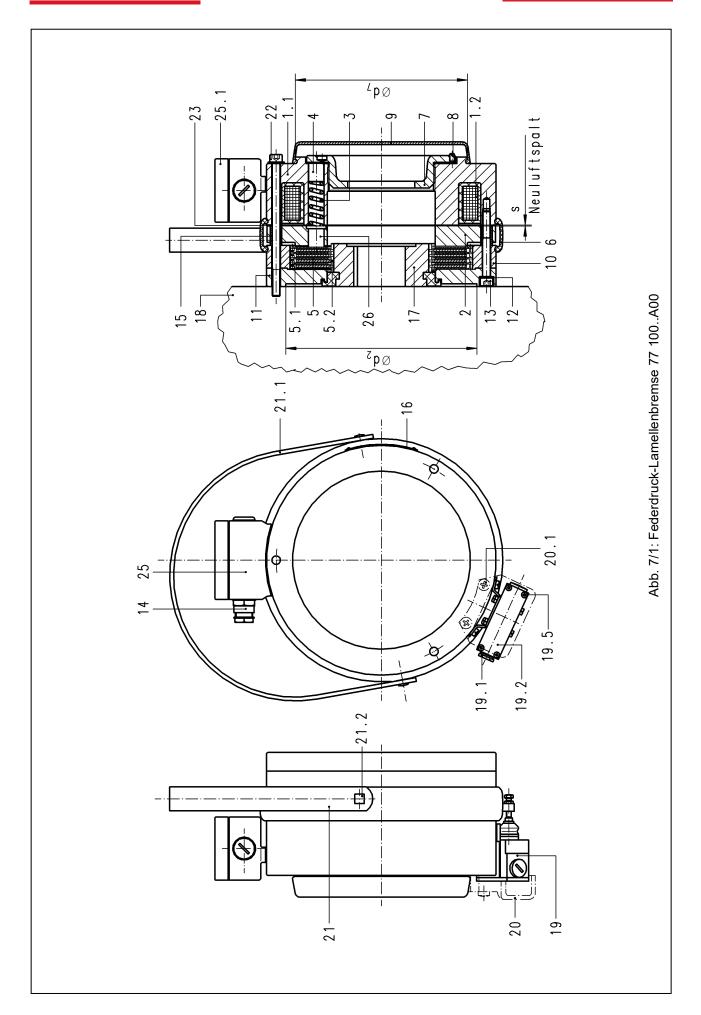
Werden die Komponenten nicht ordnungsgemäß, bestimmungsgemäß und gefahrlos verwendet, wird keine Haftung für daraus entstehende Schäden übernommen. Die Angaben in der Betriebsanleitung waren bei Drucklegung auf dem neuesten Stand. Aus den Angaben können keine Ansprüche auf bereits gelieferte Komponenten geltend gemacht werden.

2. Produktbeschreibung

2.1 Wirkungsweise

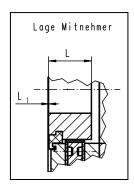
Die Federdruck-Lamellenbremse ist eine Komponente für Trockenlauf, bei der die Kraftwirkung eines elektromagnetischen Feldes zum Aufheben der durch Federkraft erzeugten Bremswirkung ausgenutzt wird. Die Federdruck-Lamellenbremse bremst im stromlosen Zustand und lüftet beim Anlegen einer Gleichspannung. Bei Bremsen mit integriertem Gleichrichter (Einweg- oder Brückengleichrichtung) kann die Bremse direkt an Wechselspannung angeschlossen werden. Durch eine formschlüssige Verbindung der Reibscheibe mit einem Mitnehmer und der Verbindung des Mitnehmers mit der Welle der Maschine (z.B. Motorwelle) wird das erzeugte Drehmoment (Bremsmoment) der Federdruckbremse an die Maschine (z.B. Motor) abgegeben. Bei Bedarf kann die Bremswirkung auch durch eine zusätzlich angebrachte Handlüftung aufgehoben werden.

2.2 Aufbau


Das Magnetgehäuse (1.1) der Federdruck-Lamellenbremse enthält die fest eingebaute Erregerwicklung (1.2) deren Anschlussklemmen im Anschlussgehäuse (25) sind und die Druckfedern (3), die über die lose im Anker (2) geführten Bolzen (26) das Lamellenpaket (5), bestehend aus den außenverzahnten im Zahnring (10) geführten Außenlammellen (5.1) und den innenverzahnten auf dem Mitnehmer (17) geführten Innenlamellen (5.2) gegen den Flansch (11) pressen. Dadurch wird die Bremswirkung der Federdruck-Lamellenbremse erzeugt. Über die Hülsen (15) und dem Zahnring (10) wird der Luftspalt s vorgegeben. Die Innenlamellen (5.2) sind mit deiner Verzahnung versehen und auf dem Mitnehmer (17) axial verschiebbar. Über eine Stopfbuchsenverschraubung (14) (PG 11) kann die kundenspezifische Anschlussleitung in das Anschlussgehäuse (25) geführt werden. Beim Anlegen einer Gleichspannung an die Erregerwicklung (1.2) der Federdruck-Lamellenbremse wird infolge der Kraftwirkung des magnetischen Feldes die Federkraft kompensiert, der Anker (2) gelüftet und damit die Bremswirkung der Bremse aufgehoben. Die abzubremsende Welle erfährt durch die Federdruck-Lamellenbremse keine axiale Kraft. Bei Bremsen mit einer Handlüftung (21) sind entsprechende Ausnehmungen in dem die Bremse umschließenden Teil (z.B. Lüfterhaube) vorzunehmen. Die Handlüftung (21) bietet die Möglichkeit (z.B. bei Stromausfall) die Bremse von Hand zu lüften. Der Einsatz der Bremse in Senkrechtlauf ist grundsätzlich möglich. Eingebaute Spreizfedern in den Außenlamellen (5.1) garantieren einen nahezu restmomentfreien Einsatz der Federduck-Lamellenbremse im gelüfteten (offenen) Zustand. Durch die flanschseitig u. gehäuseseitig angebrachten Zentrierdurchmesser (Durchmesser d₂ u. d₇), ist die Federdruck-Lamellenbremse nach Entfernen der Abdeckhaube (9), besonders für Verwendungen in Applikationen mit anzubauenden Gebern (z.B. Tacho, Drehgeber, etc.) geeignet.

Bezug	szeichenliste zur Abb. 7/1:		
1.1	Magnetgehäuse	17	Mitnehmer mit Labyrinth
1.2	Erregerwicklung	18	Befestigungsfläche
2	Anker	19	Mikroschalter
3	Druckfeder	19.1	Stopfbuchsenverschraubung
4	Druckbolzen	19.2	Deckel Mikroschalter (19)
5	Lamellenpaket	19.3	Kontermutter
5.1	Außenlammelen	19.4	Sechskantschraube
5.2	Innenlamellen	20	Schutzdeckel
6	Manschette	20.1	Zylinderschrauben Schutzdeckel (20)
7	Einstellring	21	Handlüftung
8	Gewindestift	21.1	Bügel
9	Abdeckhaube	21.2	Nocken
10	Zahnring	22	Befestigungsschrauben
11	Flansch	23	Antiklebscheibe
12	Dichtring	25	Anschlussgehäuse
13	Zylinderschraube	25.1	Deckel Anschlussgehäuse
14	Stopfbuchsenverschraubung	25.2	Anschlussklemme bzw. Gleichrichter
15	Hülsen	25.3	Zylinderschraube
16	Typenschild (Leistungsschild)	26	Bolzen

Tab. 6/1: Bezugszeichenliste zur Federdruck-Einscheibenbremse



3. Montage

3.1 Mechanische Montage

Der Mitnehmer (17) ist auf eine Welle mit Passfeder nach DIN 6885 Bl. 1 auf zuschieben und axial zu sichern (mittels Wellenbund, Sicherungsring oder dergleichen). Es ist darauf zu achten, dass die Stirnfläche des Mitnehmers (17) in einer Ebene mit der Stirnfläche des Flansches (11) liegt. Anschließend ist das gesamte Bremssystem auf den Mitnehmer (17) zu schieben und am Zentrierdurchmesser d² (siehe Datenblatt Classic Line) des Flansches (11) zu zentrieren. Die in ihrer Lage durch die Druckfedern (3) fixierten Innenlamellen (5.2) sind ab Werk so zentriert, dass die gesamte Bremseinheit sich ohne großen Aufwand auf den Mitnehmer schieben lässt. Es ist darauf zu achten, dass sich die Innenlamellen (5.2) auf dem Mitnehmer (17) unter geringem Widerstand verschieben lassen.

				Größe			
	13	16	19	24	25	29	33
L [mm]	24	26,5	30	45	45	52	58
L ₁ [mm]	0-1	0-1	0-1	0-1,2	0-1,2	0-1,2	0-1,2
M _A [Nm]	4	8	8	12	12	18	28
M _{AZ} [Nm]	4	8	8	12	12	18	28

Tab. 8/1: Abmessungen Mitnehmer (17); Anzugsmomente Befestigungsschrauben (22) und Zylinderschrauben (13)

Zum Anbau der Bremse muss die Befestigungsfläche (18) folgende Anforderungen erfüllen:

- Planlaufabweichung gegenüber der Welle <0,1mm (Messradius = Befestigungsteilkreisdurchmesser)
- Oberflächenrauheit max. Rz16
- Oberflächenhärte min. 100HB
- Werkstoff: Stahl, Gusseisen, Aluminium
- Absolute Öl- und Fettfreiheit
- Zulässiger Mittenversatz des Zentrierdurchmessers (Befestigungsfläche (18)) zur Welle <0,2mm
- Der Werkstoff muss gut wärmeleitend sein

Mit den Befestigungsschrauben (22) wird nun die Federdruck-Lamellenbremse an die Befestigungsfläche (18) angeschraubt. Die Anzugsmomente M_A der Befestigungsschrauben (22) sind der Tab. 8/1 zu entnehmen. Der Neuluftspalt s ist ab Werk eingestellt u. kann durch Ein- bzw. Nachstellung nicht verändert werden.

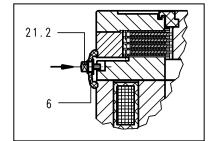
Hinweis:

Die Innenlamellen (5.2) müssen auf dem Mitnehmer (17) von Hand leicht verschiebbar sein. Die montierten Bauteile, insbesondere die Reibflächen und die Mitnehmerverzahnung müssen öl- und fettfrei sein.

Achtung:

Das Anzugsmoment M_A für die Befestigungsschrauben (22) ist unbedingt einzuhalten. Die Befestigungsschrauben (22) dürfen nicht einseitig angezogen werden.

Hinweis:


Werkseitig wird der bereits vorhandene Zentrierdurchmesser d_7 (siehe Abb. 7/1) für einen evtl. Tachoanbau am Magnetgehäuse (1.1) zum Zentrierdurchmesser d_2 des Flansches (11) mit einer Rundlauftoleranz von maximal 0,2mm ausgerichtet.

3.2 Montage Zubehör

Handlüftung (21):

Die Nocken (21.2) sind in die zwei am Umfang der Manschette (6) angebrachten Bohrungen lagerichtig einzustecken und zu arretieren. Der Handlüftbügel (21.1) ist in den Vierkant der Nocken (21.2) einzuhängen. Die Lüftkräfte F und die maximal zulässigen Lüftkräfte (Betätigungskräfte) F_{max} sind Tab 9/1 zu entnehmen.

Hinweis:

Für den Einsatz der Bremse mit Handlüftung (21) sind die anlagebedingten Vorschriften, z. B. für Hebezeuge, zu beachten.

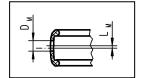
	Größe						
	13	16	19	24	25	29	33
Lüftkraft F 1) [N]	15	40	50	55	55	90	180
Max. zulässiges Lüftkraft (Betätigungskraft) F _{max} [N]	22	60	75	85	85	140	270

Tab 9/1: Lüftkraft F u. max. zulässige Lüftkraft (Betätigungskraft) F_{max} der Handlüftung (21)

Hinweis:

Beim Montieren der Nocken (21.2) ist darauf zu achten, dass die an den Nocken (21.2) vorhandenen Flächen, in Richtung Anker (2) bzw. Zahnring (10) montiert werden. Bei nachtäglichem Anbau einer Handlüftung (21) muss zur Befestigung der Nocken (21.2) mit der Manschette (6), die Manschette (6) abgenommen werden und zwei Bohrungen (siehe untenstehende Skizze) um 180° versetzt in die Manschette (6) eingebracht werden. Die axiale Lage und die Größe der Bohrungen sind Tab. 9/2 zu entnehmen.

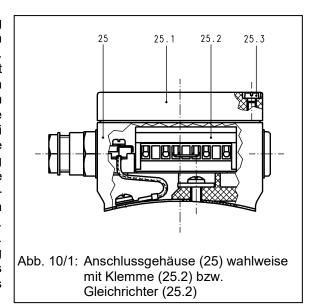
Vorsicht:


Durch eine angebaute Handlüftung (21) kann das Bremsmoment manuell aufgehoben werden. Es ist daher der Anbau der Bremse so zu wählen, dass ein unbeabsichtigtes Betätigen der Handlüftung (21) ausgeschlossen wird. Durch eine angebaute Handlüftung (21) kann das Bremsmoment manuell aufgehoben werden.

Warnung:

Die mechanische Handlüftung (21) muss sich im unbetätigten Zustand in Mittelposition (siehe Abb. 7/1) befinden, da nur hier, eine vollständig geschlossene Bremse sichergestellt ist. Wird dies nicht erreicht, kann nicht sichergestellt werden, dass die volle Bremswirkung der Federdruck-Lamellenbremse erreicht wird. Der Anwender hat dann unverzüglich die Anlage bzw. Maschine (z.B. Motor) still zusetzen. Die Wiederinbetriebnahme ist nur nach Sicherstellung der einwandfreien Funktion der Handlüftung (21) und der Rückstellung des Handlüftbügels in seine Mittelposition (siehe Abb. 7/1) gestattet.

	Größe						
	13	16	19	24	25	29	33
Bohrung Manschette D _M [mm]	7+0,5	11+0,5	11+0,5	11+0,5	11+0,5	13+0,5	15 ^{+0,5}
Abstand L _M [mm]	1	1,3	1	5,5	5,5	6,5	7,5


Tab. 9/2: Bohrungsdurchmesser D_M und axiale Lage L_M der Manschettenbohrungen

¹⁾ Lüftkraft F (ca.) bezogen auf das größte Nennmoment (Standard).

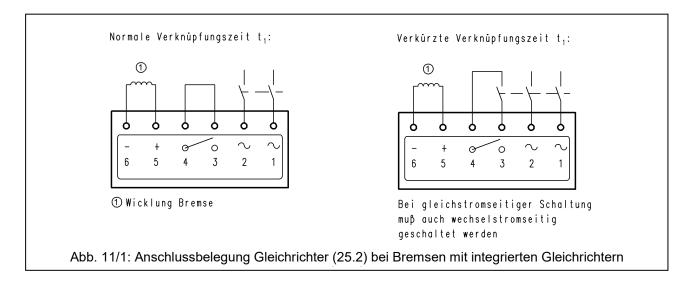
3.3 Elektrischer Anschluss und Betrieb

Die Federdruck-Lamellenbremse ist an Gleichspannung anzuschließen. Der elektrische Anschluss an ein Wechselstromnetz erfolgt über Einweg-, Brücken-, bzw. Übererregungsgleichrichter (25.2). Bei Bremsen mit Anschlussgehäuse (25) u. integrierten Gleichrichtern (25.2) kann die Federdruck-Lamellenbremse direkt an Wechselspannung angeschlossen werden. Anschlussbelegung ist Abb. 11/1 zu entnehmen. Bei Bremsen mit Anschlussgehäuse (25) u. Anschlussklemme (25.2) muss die Bremse direkt an Gleichspannung angeschlossen werden. kundenspezifische Die Anschlussleitung über eine Stopfbuchsenverschraubung (14) (PG 11, Klemmbereich 7,5mm bis 10mm) an die Anschlussklemmen (25.2) bzw. an den integrierten Gleichrichter (25.2) anzuschließen. Zum Anschluss der einzelnen Litzen der Anschlussleitung an die Anschlussklemmen (25.2) bzw. an die Klemmen des integrierten Gleichrichters (25.2) ist der Deckel (25.1) des Anschlussgehäuses (25) zu demontieren.

Bremsenausführungen mit Anschlusslitzen bzw. Anschlusskabel besitzen kein Anschlussgehäuse u. müssen mit ihren freien Drahtenden der Anschlusslitzen bzw. des Anschlusskabels unmittelbar an Gleichspannung angeschlossen werden.

Gleichrichtertyp	Gleichrichterart	Nenneingangsspannungs- bereich U ₁ /VAC (40-60Hz)	Ausgangsspannung U₂/VDC	Max. Ausga R-Last I/ADC	angsstrom L-Last I/ADC			
32 07.22B.0	Einweg	0-500 (±10%)	U ₁ • 0,445	1,6	2,0			
32 07.23B.0	Brücke	0-400 (±10%)	U ₁ • 0,890	1,6	2,0			
32 17350E	Übererregung Brücke⇒Einweg	48-120 (±10%) 220-415 (±10%) 480-525 (±10%)	U ₁ • 0,890 / U ₁ • 0,445	2,3	3			
32 17.2.B	Übererregung Brücke⇒Einweg	110-230 (±10%) 220-415 (±10%)	U ₁ • 0,890 / U ₁ • 0,445	1,2 0,8	1,5 1,0			
	Bitte Datenblätter der jeweiligen Gleichrichtertypen beachten							

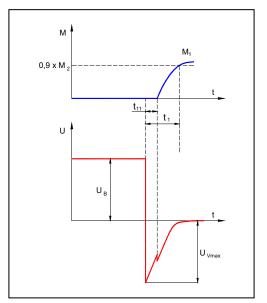
Tab. 10/1: Empfohlene Gleichrichter zum Betrieb an Einphasen-Wechselspannung bei el. Anschluss über Anschlussklemme (25.2)



Achtung:

Bei Montage des Deckels (25.1) mit dem Anschlussgehäuse (25) sind die Anzugsmomente M_A der Zylinderschrauben nach Tab. 14/1 unbedingt einzuhalten. Die Flachdichtung zwischen Anschlussgehäuse (25) und Anschlussdeckel (25.1) darf nicht beschädigt werden.

Bei Bremsen mit integrierten Gleichrichtern (25.2) erfolgt die Gleichrichtung über einen Einweggleichrichter (19.2). Durch entsprechende Beschaltung des integrierten Gleichrichters (19.2) kann wechselstromseitig (normale Einkuppelzeit t₁) bzw. gleichstromseitig (kurze Einkuppelzeit t₁) geschalten werden (siehe Abb. 11/1). Zum direkten Anschluss an ein Wechselstromnetz über die integrierte Anschlussklemme (25.2) stehen diverse Kendrion Gleichrichtertypen (siehe Tab. 10/1 (Auszug)) zur Verfügung. Welligkeiten der Spannung durch getaktete Versorgungen können je nach Größe und Momenten zu Brummen oder zu einem nicht bestimmungsgemäßen Betriebsverhalten der Komponente führen. Der Anwender oder Systemhersteller hat durch die elektrische Ansteuerung den bestimmungsgemäßen Betrieb zu gewährleisten.


3.3.1 Gleichstromanschluss

Der prinzipielle Verlauf der Spannung beim Abschalten der Erregerwicklung (Spule) (1.2) entspricht nebenstehender Kurve.

Achtung:

Die Spannungsspitze U_{Vmax} während des Abschaltens kann ohne Schutzbeschaltung im Millisekunden-Bereich **mehrere 1000V** erreichen. Die Erregerwicklung (Spule) (1.2), Schaltkontakte und elektronische Bauteile können zerstört werden. Beim Abschalten kommt es zu Funkenbildung am Schalter. Beim Abschalten muss daher der Strom über eine Schutzbeschaltung abgebaut werden, dabei werden dann auch Spannungen begrenzt. Die max. zulässige Überspannung beim Abschalten darf 1500 V nicht überschreiten. Bei Verwendung von Kendrion Gleichrichtern (siehe Tab. 10/1) ist die Schutzbeschaltung für die internen elektronischen Bauteile u. für die Erregerwicklung (Spule) (1.2) integriert. Dies gilt nicht, für die zum gleichstromseitigen Schalten erforderlichen externen Kontakte, da die galvanische Trennung des externen Kontakts dann nicht mehr erreicht wird.

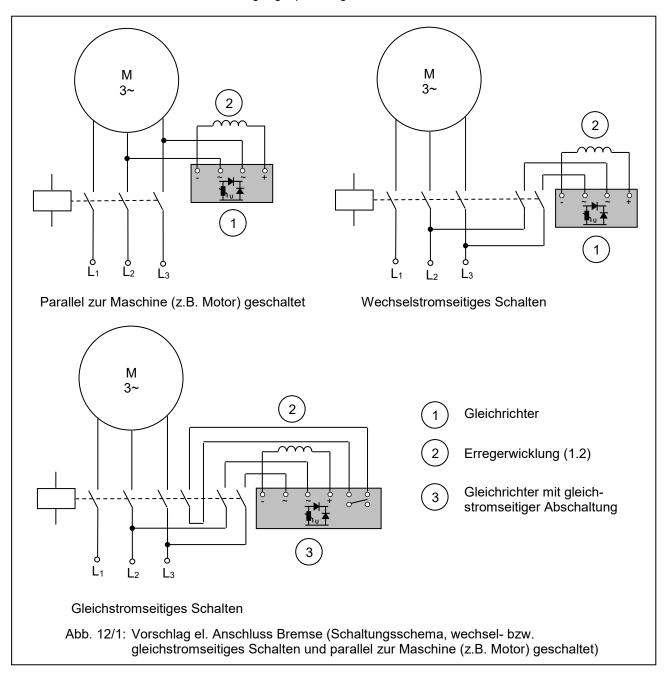
 $\begin{array}{ll} U_B & \text{Betriebsspannung (Spulenspannung)} \\ U_{Vmax} & \text{Abschaltspannung} \end{array}$

Achtung:

Empfindliche elektronische Bauteile (z.B. Logikbauteile) können auch durch die niedrigere Spannung beschädigt werden

3.3.2 Wechselstromanschluss

Der Anschluss direkt an Wechselspannung ist nur über Gleichrichter möglich. Je nach Schaltungsart (gleichstromseitiges Schalten, bzw. wechselstromseitiges Schalten) sind unterschiedliche Einkuppelzeiten erreichbar.


Einweggleichrichtung:

Bei Einweggleichrichtung ergibt sich eine Spulenspannung U₂ die um den Faktor 0,445 kleiner ist als die Eingangsspannung am Gleichrichter. Einweggleichrichter haben eine hohe Restwelligkeit, die im Vergleich zur Brückengleichrichtung je nach Bremsengröße zu etwas kürzeren Schaltzeiten führt. Der Einweggleichrichter wird daher (auch aufgrund der kleineren Spulenspannungen) bevorzugt. Bei kleinen Baugrößen kann es jedoch zum Brummen der Bremse kommen.

Brückengleichrichtung:

Brückengleichrichter liefern eine Spannung mit geringer Restwelligkeit, so dass auch bei kleinen Baugrößen ein Brummen der Bremse vermieden wird. Bei Brückengleichrichtung ergibt sich eine Spulenspannung U₂ die um den Faktor 0,89 kleiner ist als die Eingangsspannung am Gleichrichter.

Wechselstromseitiges Schalten:

Die einfachste Art der Beschaltung ergibt sich durch paralleles Anschließen von Gleichrichter und Bremse im Klemmenkasten der Maschine (z.B. Motor). Bei dieser Beschaltung ist jedoch zu berücksichtigen, dass der Motor nach Abschalten als Generator wirkt und so die Einkuppelzeiten erheblich verlängern kann (mindestens Faktor 5). Die Trennzeiten werden nicht verlängert.

Gleichstromseitiges Schalten:

Bei gleichstromseitiger Schaltung der Bremse wird z.B. am Motorschütz ein zusätzlicher Hilfskontakt aufgesteckt, der die Stromzuführung zur Bremse auf der Gleichstromseite unterbricht.

Achtung:

Bei gleichstromseitiger Schaltung muss die Bremse mit einer Schutzbeschaltung betrieben werden, um unzulässige Überspannungen zu vermeiden. Um Schädigungen (z.B. Abbrand, Kontaktverschweißung) der externen Schaltglieder zu vermeiden, sind zusätzliche Schutzmaßnahmen (z.B. Varistoren, Funklöschglieder, etc.) vorzusehen.

Warnung:

Alle Arbeiten dürfen nur von qualifiziertem Fachpersonal ausgeführt werden. Elektrischen Anschluss nur im spannungsfreien Zustand durchführen. Typenschildangaben sowie das Schaltbild im Klemmenkasten oder die Betriebsanleitung beachten.

Warnung:

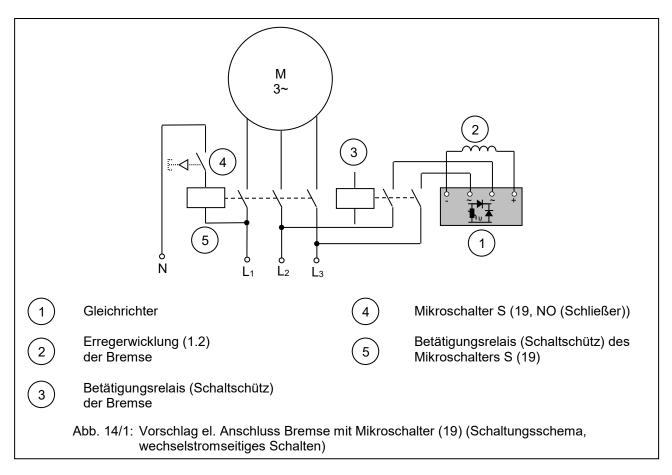
Die Bremse ist ein Gleichstromsystem. Die dauernd zulässige Spannungsänderung an der Anschlussstelle der elektromagnetischen Komponente beträgt +10% bis -10% der Nennspannung.

Grundsätzlich ist beim Anschließen zu prüfen, dass

- die Anschlussleitungen der Verwendungsart, den auftretenden Spannungen und Stromstärken angepasst sind,
- die Anschlussleitungen durch Schrauben, Klemmverbindungen oder andere gleichwertige Mittel derart fachgerecht angeschlossen sind, dass die elektrische Verbindung dauerhaft erhalten bleibt,
- ausreichend bemessene Anschlussleitungen, Verdreh-, Zug- und Schubentlastung sowie Knickschutz für die Anschlussleitungen vorgesehen sind,
- der Schutzleiter (nur bei Schutzklasse I) am Erdungspunkt angeschlossen ist,
- sich im Klemmenkasten keine Fremdkörper, Schmutz oder Feuchtigkeit befindet,
- nicht benötigte Kabeleinführungen und der Klemmenkasten selbst so verschlossen sind, dass die vorgesehene Schutzart nach EN 60529 eingehalten wird.

3.3.3 El. Anschluss von Federdruck-Lammellenbremsen mit Mikroschalter (19)

Bei Bremsen mit Mikroschalter (19) zur Überwachung des Betriebszustandes (Offen, Geschlossen) der Federdruck-Lamellenbremse ist der Mikroschalter (19) in den Steuerstromkreis zur Ansteuerung der Maschine (z.B. Motor) zu integrieren (siehe Abb. 14/1, Vorschlag el. Anschluss Bremse u. Mikroschalter (19)). Der Mikroschalter (19) verhindert dann bei zweckmäßiger Integration ein Anlaufen der Maschine (z.B. Motor) gegen die nicht geöffnete Federdruck-Lamellenbremse. Zur Montage des Anschlusskabels für den Mikroschalter (19), ist bei Bremsen mit Schutzdeckel (20) für den Mikroschalter (19), der Schutzdeckel (20) zu entfernen. Anschließend kann der Deckel (19.2) des Mikroschalters (19) gelöst und entfernt werden. Über eine Stopfbuchsenverschraubung (19.1) (PG 9) kann die kundenspezifische Anschlussleitung für den Mikroschalter (19) in das Anschlussgehäuse des Mikroschalters (19) geführt werden. Die Litzen des Anschlusskabels sind über die Anschlussklemmen des Mikroschalters (19) mit den Kontakten NO (Normally Open) und C (Common) zu verbinden. Nach erfolgter Kontaktierung muss der Deckel (19.2) des Mikroschalters (19) und der Schutzdeckel (20) für den Mikroschalter (19) wieder montiert werden. Der Mikroschalter (19) ist bei der Bestellung optional erhältlich. Ein nachträglicher Anbau ist nicht möglich. Bei der Lieferung der Federdruck-Lamellenbremse ist der Mikroschalter (19) werkseitig justiert.


Achtung:

Bei Montage des Schutzdeckels (20), des Deckels (19.2) für den Mikroschalter (19) und des Deckels (25.1) für das Anschlussgehäuse (25) sind die Anzugsmomente M_A der jeweiligen Zylinderschrauben nach Tab. 14/1 unbedingt einzuhalten.

				Größe			
	13	16	19	24	25	29	33
Anzugsmoment M_A [Nm] der Zylinderschrauben (20.1) für Schutzdeckel (20)	-	5	5	5	5	-	-
Anzugsmoment M_A [Nm] der Zylinderschrauben (19.5) für Deckel (19.2) des Mikroschalters (19)	0,75	0,75	0,75	0,75	0,75	0,75	0,75
Anzugsmoment M_A [Nm] der Zylinderschrauben (25.3) für Deckel (25.1) des Anschlussgehäuses (25)	1,6	1,6	1,6	1,6	1,6	1,6	1,6

Tab. 14/1: Anzugsmomente der jeweiligen Zylinderschrauben für Schutzdeckel (20), Deckel (19.2) und Deckel (25.1) des Anschlussgehäuses (25)

Hinweis:

Die besonderen Vorschriften über den zulässigen Einsatz von Mikroschalter (19), z.B. in Hebezeugbau, sind zu beachten.

Warnung:

Die Motorschaltung ist so zu sichern, dass beim Schließen des Mikroschalters (19) kein unbeabsichtigter Anlauf des Motors erfolgen kann.

Hinweis:

Der Vorschlag zur elektrischen Verschaltung der Bremse mit Mikroschalter (19) nach Abb. 14/1, entspricht den allgemeinen Empfehlungen zur Verschaltung elektromagnetischer Komponenten in elektrischen Maschinen (z.B. Motoren) ohne den Einfluss eines Lastmoments. Für Anwendungen mit Einwirkung eines Lastmoments hat der Systemanwender die sichere und sachgemäße elektrische Verschaltung des Mikroschalters (19) und der Bremse sicherzustellen.

3.4 Elektromagnetische Verträglichkeit

Die elektromagnetische Verträglichkeit muss nach dem EMVG bezüglich der Störunempfindlichkeit gegen von außen einwirkende elektromagnetische Felder und leitungsgebundene Störungen sichergestellt werden. Darüber hinaus muss die Aussendung elektromagnetischer Felder und leitungsgebundener Störungen beim Betrieb der Komponente limitiert werden. Aufgrund der von Beschaltung und Betrieb abhängigen Eigenschaften der Bremse ist eine Konformitätserklärung zur Einhaltung der entsprechenden EMV-Norm nur im Zusammenhang mit der Beschaltung möglich, für die einzelnen Komponenten jedoch nicht. Die Federdruck-Lamellenbremsen 77 100..A00 sind grundsätzlich für den industriellen Einsatz vorgesehen, für den die elektromagnetische Verträglichkeit in den Fachgrundnormen EN 61000-6-2 bezüglich Störfestigkeit und EN 61000-6-3 bzw. EN 61000-6-4 für die Störaussendungen geregelt ist. Für andere Anwendungsbereiche gelten ggf. andere Fachgrundnormen, die vom Hersteller des Gesamtsystems zu berücksichtigen sind. Die elektromagnetische Verträglichkeit von Geräten oder Baugruppen wird nach Basisstandards festgestellt, die aus den Fachgrundnormen ersichtlich sind. Im Folgenden werden deshalb Beschaltungsempfehlungen für die Einhaltung der verschiedenen Basisstandards gegeben, die für den Einsatz im Industriebereich und darüber hinaus auch teilweise in anderen Anwendungsbereichen relevant sind. Zusätzliche Informationen zur elektromagnetischen Verträglichkeit insbesondere der unter Kapitel 3.3 empfohlenen elektronischen Gleichrichter sind aus deren Datenblättern ersichtlich.

Störunempfindlichkeit nach EN 61000-4:

EN 61000-4-2 Elektrostatische Entladung:

Die Federdruck-Lamellenbremsen 77 100.. A00 entsprechen mindestens dem Schärfegrad 3 ohne zusätzliche Maßnahmen. Die unter Kapitel 3.3 empfohlenen Gleichrichter entsprechen dem Schärfegrad 3 ohne zusätzliche Maßnahmen. Bei Bremsen mit integrierten Gleichrichtern entspricht der Gleichrichter Schärfegrad 3 ohne zusätzliche Maßnahmen.

EN 61000-4-3 Elektromagnetische Felder:

Die Bremsen entsprechen mindestens Schärfegrad 3 ohne zusätzliche Maßnahmen. Die empfohlenen Gleichrichter entsprechen dem Schärfegrad 3 ohne zusätzliche Maßnahmen. Bei Bremsen mit integrierten Gleichrichtern entspricht der Gleichrichter Schärfegrad 3 ohne zusätzliche Maßnahmen.

EN 61000-4-4 Transiente Störgrößen (Burst):

Die Bremsen entsprechen mindestens Schärfegrad 3 ohne zusätzliche Maßnahmen. Die empfohlenen Gleichrichter entsprechen dem Schärfegrad 3. Bei den Produkten der Reihe 32 17.2.B.. können bei Schärfegrad 3 zeitlich begrenzte geringfügige Spannungserhöhungen auftreten, die jedoch keine Funktionsstörung zur Folge haben. Bei Bremsen mit integrierten Gleichrichtern entspricht der Gleichrichter Schärfegrad 3 ohne zusätzliche Maßnahmen.

EN 61000-4-5 Stoßspannungen:

Die Bremsen entsprechen mindestens Schärfegrad 3 ohne zusätzliche Maßnahmen. Die empfohlenen Gleichrichter entsprechen dem Schärfegrad 3. Bei Bremsen mit integrierten Gleichrichtern entspricht der Gleichrichter Schärfegrad 3 ohne zusätzliche Maßnahmen.

EN 61000-4-9 Impulsmagnetfelder, EN 61000-4-10 gedämpfte schwingende Magnetfelder:

Da die Arbeitsmagnetfelder der elektromagnetischen Komponenten um ein Vielfaches stärker als Störfelder sind, ergeben sich keine Funktionsbeeinflussungen. Die Bremsen entsprechen mindestens Schärfegrad 4. Die empfohlenen Gleichrichter entsprechen mindestens Schärfegrad 3. Bei Bremsen mit integrierten Gleichrichtern entspricht der Gleichrichter Schärfegrad 3 ohne zusätzliche Maßnahmen.

EN 61000-4-11 Spannungseinbrüche, Kurzzeitunterbrechungen und kurzzeitige Versorgungsspannungsschwankungen:

a) Spannungsunterbrechungen:

Die Bremsen nach DIN VDE 0580 gehen spätestens nach den spezifizierten Schaltzeiten in den stromlosen Schaltzustand über, wobei die Schaltzeit von der Ansteuerung und den Netzverhältnissen (z.B. Generatorwirkung auslaufender Motoren) abhängig ist. Spannungsunterbrechungen mit kürzerer Zeitdauer als der Ansprechverzugszeit nach DIN VDE 0580 verursachen keine Fehlfunktion. Der Anwender hat sicherzustellen, dass ein Folgeschaden (z.B. Arbeit des Motors gegen die geschlossene Bremse durch evtl. noch zweiphasig bestromte Motoren bei Ausfall einer Phase oder Rutschen eines elektromagnetisch schließenden Systems infolge Drehmomentabfalls) vermieden wird. Die Funktionsfähigkeit der elektromagnetischen Komponente und des elektronischen Zubehörs bleibt erhalten, wenn o.g. Folgeschäden vermieden werden.

b) Spannungseinbrüche und kurzzeitige Versorgungsspannungsschwankungen:

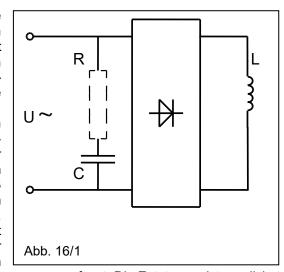
Elektromagnetisch öffnende Systeme:

Spannungseinbrüche und Versorgungsspannungsschwankungen auf Werte unter 60% der Nennspannung mit einer Zeitdauer größer als der Ansprechverzugszeit nach DIN VDE 0580 können zu zeitweisem Übergang in den stromlosen Schaltzustand führen. Folgeschäden wie unter a) sind durch den Anwender auf geeignete Weise zu verhindern.

Elektromagnetisch schließende Systeme:

Spannungseinbrüche und Versorgungsspannungsschwankungen wie o.g. auf Werte unterhalb der dauerhaft zulässigen Toleranzen führen zum Absinken des Drehmoments. Der Anwender hat sicherzustellen, dass ein Folgeschaden vermieden wird.

Funkentstörung nach EN 55011:


Die Bremsen und die empfohlenen elektronischen Gleichrichter sind der Gruppe 1 nach EN 55011 zugehörig. Das Störverhalten ist nach feldgebundener Störstrahlung und leitungsgebundener Störspannung zu unterscheiden.

a) Funkstörstrahlung:

Bei Betrieb mit Gleichspannung bzw. gleichgerichteter 50/60 Hz-Wechselspannung entsprechen alle Komponenten den Grenzwerten der Klasse B.

b) Funkstörspannung:

Bei Betrieb mit Gleichspannung entsprechen die elektromagnetischen Komponenten mindestens den Grenzwerten der Klasse A. Werden die Komponenten mit elektronischen Gleichrichtern oder sonstigen elektronischen Ansteuerungen an 50/60 Hz-Wechselstromnetz betrieben, sind zur Erreichung der Grenzwerte der Klasse A ggf. Entstörmaßnahmen nach Abb. 16/1 notwendig. Es wird die Verwendung von Entstörkondensatoren empfohlen, deren Dimensionierung von den elektrischen Anschlussdaten der elektromagnetischen Komponenten und auch von den Netzverhältnissen abhängig ist. Die unter Kapitel 3.3 aufgeführten empfohlenen Gleichrichter mit CE-Zeichen nach EMVRL haben bereits integrierte Entstörglieder, wenn nicht im ieweiligen Datenblatt anders angegeben ist mindestens Klasse A nach EN 55011 gewährleistet. Für den Betrieb mit den empfohlenen oder anderen

Gleichrichtern sind in Tab. 17/1 die empfohlenen Werte zusammengefasst. Die Entstörung ist möglichst nahe am Verbraucher zu installieren. Störungen beim Schalten der elektromagnetischen Komponenten durch sind generell die induktive Last bedingt. Je nach Erfordernis kann eine Abschaltspannungsbegrenzung durch eine antiparallele Diode oder Bauelemente Spannungsbegrenzung, wie Varistoren, Suppressordioden, WD-Glieder o.a. vorgesehen werden, die jedoch Einfluss auf die Schaltzeiten der Komponenten und die Geräuschentwicklung hat. In den unter Kapitel aufgeführten Gleichrichtern sind Freilaufdioden bzw. Varistoren Abschaltspannungsbegrenzungen integriert. Bei gleichstromseitiger Schaltung begrenzt ein für die jeweilige typabhängige maximale Betriebsspannung dimensionierter Varistor parallel zur Erregerwicklung (1.2) die Spannungsspitze auf Richtwerte die in Tab. 17/2 angegeben sind.

Betreibt der Anwender die Komponenten mit anderem elektronischen Zubehör, hat er für die Einhaltung des EMV-Gesetzes Sorge zu tragen. Die Einhaltung der entsprechenden Normen über die Auslegung bzw. den Betrieb von Komponenten bzw. Baugruppen oder verwendete Geräte entbindet den Anwender bzw. Hersteller des Gesamtgeräts oder der Anlage nicht vom Nachweis der Norm-Konformität für sein Gesamtgerät oder seine Anlage.

Gleichrichtertyp	Nenneingangs- spannungsbereich U ₁ /VAC (40-60Hz)	Gleichstrom bei L-Last (ADC)	Kondensator (nF/VAC)
Brückengleichrichter 32 07.23B.0	bis 400 (±10%)	bis 2,0	Keine zusätzlichen Entstörmaßnahmen erforderlich
Einweggleichrichter 32 07.22B.0	bis 500 (±10%)	bis 2,0	Keine zusätzlichen Entstörmaßnahmen erforderlich
Übererregungsgleichrichter 32 17350E	48-120 (±10%) 220-415 (±10%) 480-525 (±10%)	bis 3	Keine zusätzlichen Entstörmaßnahmen erforderlich
Übererregungsgleichrichter 32 17.2.B	110-230 220-415	bis 1,5 bis 1,0	Keine zusätzlichen Entstörmaßnahmen erforderlich

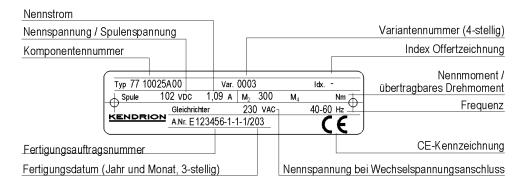
Tab. 17/1

Max. Betriebsspannung der Gleichrichter (VAC)	Richtwert Abschaltspannung bei gleichstromseitigem Schalten (V)
250	700
440	1200
550	1500

Tab. 17/2

3.5 Inbetriebnahme

Warnung:


Die Funktionskontrolle darf nur bei stillstehender Maschine (z.B. Motor), im freigeschalteten und gegen einschalten gesicherten Zustand durchgeführt werden.

3.5.1 Umfang der Funktionsprüfungen

Folgende Funktionen sind zu prüfen:

Leistungsschildangaben (Typenschild) hinsichtlich Bauform und Schutzart beachten und Übereinstimmung mit den Verhältnissen am Einbauort prüfen. Nach dem elektrischen Anschluss der Bremse ist eine Funktionskontrolle auf Freigängigkeit der Reibscheibe (5) durch Drehen an der Welle (bei bestromter Bremse und unbestromter Maschine (z.B. Motor) erforderlich. Nach der Aufstellung für das Anbringen evtl. vorgesehener Abdeckungen und Schutzvorrichtung sorgen.

Typenschildangaben (Daten nach Auftrag, Beispiel Typ 77 10025A00):

Anmerkung: Die Komponentennummer und Variantennummer bilden zusammen die Artikelnummer der Federdruck-Lamellenbremse z.B. 77 100.25A00-0003.

Warnung:

Für einen Probebetrieb der Maschine (z. B. Motor) ohne Abtriebselemente ist eine eventuell vorhandene Passfeder gegen Herausschleudern zu sichern. Dabei dürfen keine Lastmomente an der Welle wirken. Vor Wiederinbetriebnahme ist die Bestromung der Bremse aufzuheben.

Vorsicht:

An der Bremse können Oberflächentemperaturen >60 °C auftreten. Es dürfen dort keine temperaturempfindlichen Teile, z. B. normale Leitungen oder elektronische Bauteile anliegen oder befestigt werden. Bei Bedarf sind Berührungsschutzmaßnahmen vorzusehen! Wenn bei Einrichtungsarbeiten bei abgeschalteter Maschine (z.B. Motor) die Welle gedreht werden muss, ist die Bremse elektromagnetisch oder gegebenenfalls über eine Handlüftung (21) zu öffnen.

Achtung:

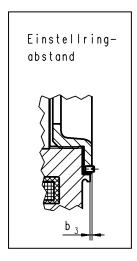
Eine Hochspannungsprüfung bei der Montage oder Inbetriebnahme in ein Gesamtsystem muss so durchgeführt werden, dass integriertes elektronisches Zubehör nicht zerstört werden kann. Darüber hinaus sind die in DIN VDE 0580 angeführten Limits für Hochspannungsprüfungen und insbesondere Wiederholungsprüfungen zu beachten.

Achtung:

Vor Inbetriebnahme ist der korrekte elektrische Anschluss entsprechend den Typenschildangaben sicher zu stellen. Auch kurzzeitiger Betrieb mit Versorgungsspannung außerhalb der spezifizierten Daten kann zur Schädigung oder Zerstörung von Bremse und elektronischem Zubehör führen, der u.U. nicht sofort ersichtlich ist. Insbesondere gleichstromseitige Schaltung der Bremse ohne Schutzglieder wie unter 3.4 aufgeführt, führt kurzfristig zur Zerstörung nicht dafür vorgesehener elektronischer Gleichrichter oder elektronischen Zubehörs, der Schaltglieder selbst und der Erregerwicklung (1.2).

3.5.2 Manuelles Öffnen der Federdruck-Lamellenbremse

Die Federdruck-Lamellenbremse kann von "Hand" über eine angebaute mechanisch wirkende Handlüftung (21) (Zubehör) geöffnet werden. Bei Ausfall der regulären Stromversorgung kann aber auch durch den Einsatz einer handelsüblich erhältlichen USV-Versorgung (z.B. USV-Batteriesysteme) das Bremsmodul elektrisch geöffnet werden. Hierzu ist vom Anwender der Einbau einer USV-Versorgung, mit einer Spannung gemäß den Angaben auf dem Leistungsschild der Federdruckbremse, vorzunehmen.


Warnung:

Das manuelle Öffnen (Tippbetrieb) der Federdruck-Lamellenbremse, z.B. bei Wartungsarbeiten der Maschine (z.B. Motor) oder bei Ausfall der regulären Stromversorgung bei USV-Betrieb, ist mit besonderer Sorgfalt durchzuführen, da bei nicht ausgeglichenen Antriebssystemen das wirkende Lastmoment den Antrieb beschleunigt. Der Anwender hat sicherzustellen, dass keine Gefährdung beim Öffnen und Schließen der Federdruck-Lamellenbremse im Tippbetrieb, durch Lastmoment entsteht.

3.6 Einstellen des Nennmoments M2

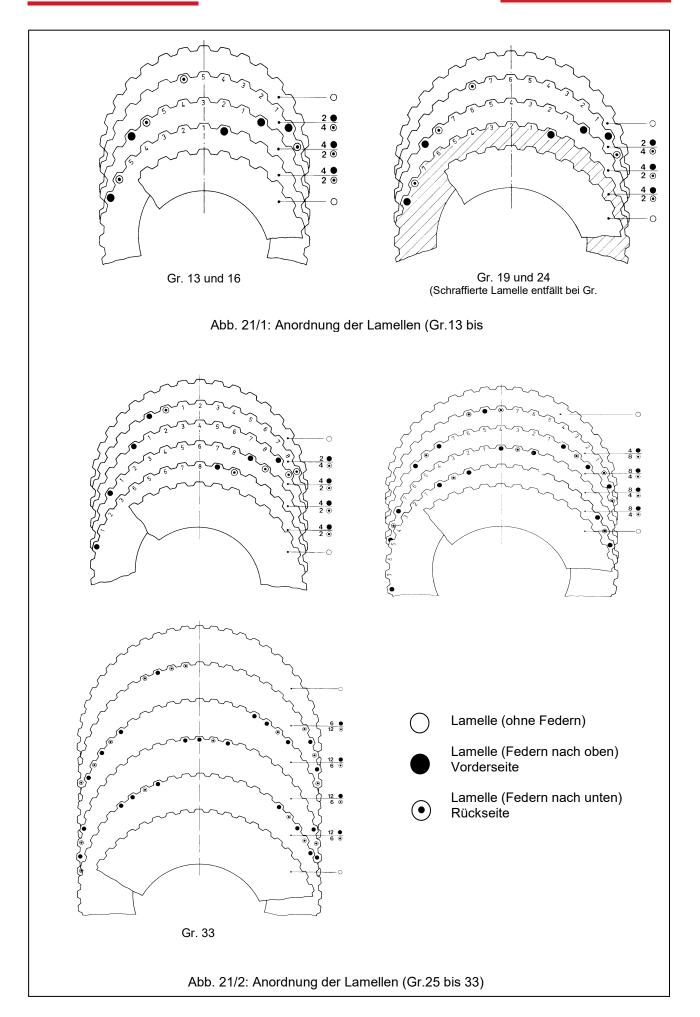
Die Bremsen sind bei der Lieferung auf das Nennmoment M_2 (nach Bestellung) eingestellt. Das werkseitig eingestellte Nennmoment M_2 ist dem Typenschild (16) der Bremse zu entnehmen. Der Einstellringabstand b_3 ist neben dem Gewindestift (8) auf dem Bund des Bremsenrückens eingeschlagen. Der Einstellringabstand b_3 kann durch Einbzw. Ausdrehen des Einstellringes (7) mit einem Zapfenschlüssel verändert werden. Die daraus folgende Änderung des Nennmoments M_2 ist Tab. 19/1 zu entnehmen. Der maximale und der minimale Einstellringabstand b_3 (siehe Tab. 19/1) darf dabei nicht über- bzw. unterschritten werden.

				Größe			
	13	16	19	24	25	29	33
$\Delta M_2/mm$ [Nm]	6,25	13,6	33,3	50	95	120	218
b _{3min} [mm]	3	2,4	3,8	2,8	3,1	1,4	1,9
b _{3max} [mm]	4,6	4,6	5,6	5,2	5	3,4	4,1

Tab. 19/1: Änderung des Nennmoments M₂ bei einem axialen Verfahrweg des Einstellrings (7) um 1mm; zulässige Einstellringabstände b₃

Achtung:

Nach Verdrehen des Einstellringes (7) ist der Einstellring (7) unbedingt mit dem Gewindestift (8) gegen Verdrehung zu sichern. Das Anzugsmoment von M_A =3Nm ist einzuhalten. Der Einstellring (7) ist so zu verdrehen, dass der Gewindestift (8) zwischen den Druckbolzen (4) angeordnet werden kann.



4. Wartung

4.1 Prüfungen, Service

Die Federdruck-Lamellenbremse ist, bis auf das Nachmessen des Luftspalts s, wartungsfrei. Der Luftspalt s (Neuluftspalt siehe Tab. 31/1, Technische Daten) kann, nachdem die Manschette (6) entfernt wurde, bei nicht bestromter Federdruck-Lamellenbremse zwischen dem Anker (2) und der eingebauten Antiklebscheibe (23) mit Hilfe einer Fühlerlehre überprüft werden. Um eine exakte Prüfung des Luftspalts s zu ermöglichen, muss der Anker (2) mit zwei Schraubendreher die um 180° versetzt angeordnet sind, zuerst in Richtung Magnetgehäuse (1.1) gedrückt werden, bis der Anker (2) an den Bolzen (4) anliegt. Ist der Luftspalt s_{max} (siehe Tab. 31/1, Technische Daten) der Federdruck-Lamellenbremse erreicht, ist das Lamellepaket (5) durch ein neues Paket (Anordnung der einzelnen Lammellen nach Abb. 21/1 bzw. Abb. 21/2) auszutauschen. Die Befestigungsschrauben (22) sind zu lösen und die Bremse vom Mitnehmer (17) zu ziehen. Die Abdeckhaube (9) ist zu entfernen und der Einstellring (7) ist nach dem Lösen des Gewindestiftes (8) herauszudrehen. Nach dem Lösen der Zylinderschrauben (13) ist der Flansch (11) vom Zahnring (10) abzunehmen. Das verschlissene Lamellenpaket (5) ist zu entnehmen und durch ein neues Paket zu ersetzten. Vor dem Zusammenbau der Federdruckbremse sind alle Teile (Flansch (11), Anker (2) und Zahnring (10)) mit fettfreien Reinigungsmitteln zu reinigen. Mit den Zylinderschrauben (13) ist der Flansch (11) über die Hülsen (15) und Zahnring (10) mit dem Kernstück der Federdruck-Lamellenbremse zu montieren. Der Einstellring (7) ist wieder auf das Maß b3 (Abstand auf dem Bund am Bremsenrücken eingeschlagen) einzudrehen und mit dem Gewindestift (8) zu sichern. Die Abdeckhaube (9) ist wie in Abb. 7/1 dargestellt aufzustecken. Abschließend ist die Federdruck-Lamellenbremse nach den Vorgaben in Kapitel 3.2 und 3.3 zu montieren und anzuschließen.

Achtung:

Bei jeder Montage der Federdruck-Lamellenbremse sind die Befestigungsschrauben (22) unbedingt mit dem in Tab. 8/1 angegebenen Anzugsmoment M_A anzuziehen. Die Zylinderschrauben (13) sind beim Zusammenbau mit dem in Tab. 8/1 angegebenen Anzugsmoment M_{AZ} anzuziehen. Der Gewindestift (8) des Einstellringes (7) ist mit einem Anzugsmoment M_A = 3Nm einzudrehen. Nach Wechsel der Reibscheibe (5) ist der Luftspalt s (Neuluftspalt siehe Tab. 31/1, Technische Daten) zu überprüfen.

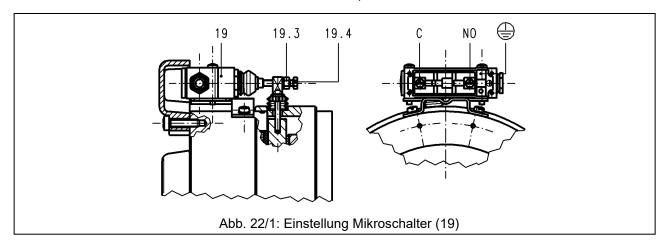
Achtung:

Nach erfolgtem Eindrehen des Einstellringes (7) muss der Gewindestift (8) direkt neben der Markierung für den Einstellringabstand b₃ stehen. Der Gewindestift darf dabei nicht auf einem Druckbolzen (4) stehen.

Achtung:

Beim Überschreiten des maximalen Luftspalts s_{max} (siehe Tab. 31/1, Technische Daten) ist ein Lüften der Federdruck-Lamellenbremse je nach Betriebszustand nicht mehr möglich. Die Bremswirkung kann dann nicht mehr aufgehoben werden. Mögliche Folgen sind thermische Überlastung und Zerstörung der Bremse (für den Fall, dass die Maschine (z.B. Motor) gegen die geschlossene Bremse anläuft) oder thermische Überlastung der Maschine (z.B. Motor) (für den Fall, dass die Maschine (z.B. Motor) nicht gegen die geschlossene Bremse anlaufen kann).

Vorsicht:


Bei montierter Handlüftung (21) und Überschreitung des maximalen Luftspaltes s_{max} (siehe Tab. 31/1, Technische Daten) begrenzt die Handlüftung (21) den Anker (2) in seiner Axialbewegung. Die Folge daraus ist ein Abfall des Drehmomentes bis gegen Null. Bei der Wartung ist stets der Luftspalt s zu überprüfen und das Lamellenpaket (5) rechtzeitig vor Erreichen des maximalen Luftspaltes s_{max} (siehe Tab. 31/1, Technische Daten) auszutauschen.

4.2 Einstellen Mikroschalter (19) (nur bei Bremsen mit Mikroschalter (19))

Zur Einstellung des Mikroschalters (19) der Bremse ist die Federdruck-Lamellenbremse elektrisch zu öffnen. Die Kontermutter (19.3) ist zu lösen u. die Sechskantschraube (19.4) so lange im Uhrzeigersinn zu drehen, bis der Mikroschalter (19) umschaltet (leises Knacken vernehmbar oder el. Durchgang zwischen NO und C). Falls der Mikroschalter (19) in Einschaltstellung steht, ist er durch Drehen entgegen dem Uhrzeigersinn in Ausschaltstellung zu bringen. Ab Umschaltpunkt ist die Sechskantschraube (19.4) wie folgt weiter zu drehen:

Bremse Gr. 13 um 50° und bei Bremsen Gr. 16-24 um 70°.

Danach ist die Kontermutter (19.3) wieder festzuziehen. Es ist darauf zu achten, dass sich die Sechskantschraube (19.4) beim Festziehen nicht mehr verstellt. Abschließend ist die Mikroschalterfunktion durch Ein- und Ausschalten der Bremse nochmals zu überprüfen.

Warnung:

Die Motorschaltung ist so zu sichern, dass beim Schließen des Mikroschalters (19) kein unbeabsichtigter Anlauf des Motors erfolgen kann.

Warnung:

Bei allen Kontroll- und Wartungsarbeiten ist sicherzustellen, dass

- kein unbeabsichtigtes Anlaufen der Maschine (z.B. Motor) erfolgen kann,
- kein Lastmoment an der Welle wirkt,
- nach der Beendigung von Kontroll- und Wartungsarbeiten die Sperre zum unbeabsichtigten Anlaufen der Maschine (z.B. Motor) aufgehoben wird,
- Fett- und Ölfreiheit aller am Reibvorgang beteiligten Flächen sichergestellt ist. Eine Reinigung eines öloder fetthaltigen Lammelenpakets (5) ist nicht möglich,
- kein quellen oder verglasen der Innenlammellen (5.2) bzw. Außenlamellen (5.1) aufgetreten ist.

4.3 Ersatzteile, Zubehör

Größe	Handlüftung (21) Z	Benennung, Bestellnummer Befestigungsschraube (22) Z	Lamellenpaket (5) E
13	71 10113E00940	304035	77 10013A00850
16	71 10116E00940	304060	77 10016A00850
19	71 10119E00940	304062	77 10019A00850
24	71 10124E00940	304088	77 10024A00850
25	71 10124E00940	304090	77 10025A00850
29	71 10129E00940	304123	77 10029A00850
33	71 10133E00940	150	77 10033A00850

Tab. 23/1: Übersicht Ersatzteile (E) und Zubehör (Z)

5. Lieferzustand, Transport und Lagerung

Nach dem Eingang der Komponente ist eine Kontrolle auf evtl. Transportschäden vorzunehmen und ggf. eine Einlagerung auszuschließen. Bestelltes Zubehör (Handlüftung, Befestigungsschrauben) wird der Bremse beigelegt. Die Federdruck-Lamellenbremse wird anbaufertig geliefert, d.h. der Luftspalt s ist über die Hülsen und dem Zahnring eingestellt. Das geforderte Nennmoment M₂ wurde werkseitig eingestellt.

Hinweis:

Wird die Komponente eingelagert, so ist auf eine trockene, staubfreie und schwingungsarme Umgebung zu achten.

Hinweis:

Für den Transport der Komponente und die Einlagerung insbesondere bei einer geplanten Langzeiteinlagerung der Komponente, sind die Umweltbedingungen nach Tab. 24/1 und EN IEC 60721-3-2 bzw. EN IEC 60721-3-1 zu beachten und einzuhalten. Dabei gelten die zulässigen Umgebungsbedingungen nur bei Lagerung der Komponente in Originalverpackung.

	Umgebungsbedingungen Lagerung nach EN IEC 60721-3-1 Transport nach EN IEC 6072					
Mechanische Bedingungen	1M11	2M4				
Klimatische Bedingungen	1K21 and 1Z2	2K12				
Biologische Bedingungen	1B1	2B1				
Mechanisch aktive Substanzen	1811	2S5				
Chemisch aktive Substanzen	1C1	2C1				

Tab. 24/1: Umgebungsbedingungen für Lagerung und Transport nach EN IEC 60721-3-1 und EN IEC 60721-3-2

6. Emissionen

6.1 Geräusche

Beim Einfallen und Lüften der Federdruck-Lamellenbremse entstehen Schaltgeräusche, die in ihrer Intensität von der Anbausituation, der Beschaltung (z.B. mit Übererregung) und vom Luftspalt abhängen. Anbausituation oder Betriebsbedingungen oder der Zustand der Reibflächen können während des Bremsvorgangs zu deutlich hörbaren Schwingungen (Quietschen) führen.

6.2 Wärme

Durch die Erwärmung der Erregerwicklung und die Verrichtung von Bremsarbeit erwärmt sich das Magnetgehäuse erheblich. Bei ungünstigen Bedingungen können Temperaturen deutlich über 60°C Oberflächentemperatur erreicht werden.

Vorsicht:

Bremse vor Berührung schützen, durch die hohe Oberflächentemperatur können Verbrennungen auftreten.

7. Störungssuche

Störung	Ursache	Maßnahmen
	Luftspalt zu groß	Luftspalt kontrollieren evtl. neues Lamellenpaket montieren
	Bremse wird nicht mit Spannung versorgt	Elektrischen Anschluss kontrollieren und gegebenenfalls Fehler beheben
	 Spannung an der Erregerwicklung zu in 	Anschlussspannung der Erregerwicklung kontrollieren und gegebenenfalls Fehler beheben
Bremse öffnet nicht	Ankerplatte mechanisch blockiert	Mechanische Blockierung entfernen
	Gleichrichter defekt	Gleichrichter kontrollieren und gegebenenfalls austauschen
	Erregerwicklung defekt	Widerstand der Erregerwicklung kontrollieren und gegebenenfalls neue Bremse montieren
	Lamellen thermisch überlastet	Neues Lamellenpaket montieren evtl. neue Bremse montieren
Bremse öffnet mit	Luftspalt zu groß	Luftspalt kontrollieren evtl. neues Lamellenpaket montieren
Verzögerung	Spannung an Erregerwicklung zu klein	Anschlussspannung der Erregerwicklung kontrollieren und gegebenenfalls Fehler beheben
Bremse schließt	 Spannung an der Erregerwicklung nach Abschalten zu groß (Restspannung) 	Spannung der Erregerwicklung auf Restspannung kontrollieren und gegebenenfalls Fehler beheben
	Ankerplatte mechanisch blockiert	Mechanische Blockierung entfernen
Bremse schließt mit Verzögerung	 Spannung an der Erregerwicklung zu groß 	Anschlussspannung der Erregerwicklung kontrollieren und gegebenenfalls Fehler beheben
	Luftspalt zu groß	Luftspalt kontrollieren evtl. neues Lamellenpaket montieren
Bremsmoment ist zu klein	Öl- oder fetthaltige Lamellen	Lamellen kontrollieren und gegebenenfalls neues Lamellenpaket montieren
	 Handlüftung begrenzt den Anker in der Axialbewegung 	Luftspalt kontrollieren und gegebenenfalls neues Lamellenpaket montieren
	Druckfeder gebrochen	Federkraft kontrollieren und gegebenenfalls neue Bremse montieren.
Mikroschalter schaltet nicht (nur	Mikroschalter der Federdruck- Lamellenbremse defekt	Neuen Mikroschalter montieren
bei Typen mit Mikroschalter)	Schaltpunkt des Mikroschalters verstellt	Neujustage (Schaltpunkt) des Mikroschalters

Tab. 25/1: Auszug möglicher Störungen, Störungsursachen u. Abhilfemaßnahmen zur Beseitigung der aufgetretenen Störung

8. Sicherheitshinweise

Die Komponenten werden unter Berücksichtigung einer Gefährdungsanalyse und unter Beachtung der einzuhaltenden harmonisierten Normen, sowie weiterer technischer Spezifikationen konstruiert und gebaut. Sie entsprechen damit dem Stand der Technik und gewährleisten ein Höchstmaß an Sicherheit. Diese Sicherheit kann in der betrieblichen Praxis jedoch nur dann erreicht werden, wenn alle dafür erforderlichen Maßnahmen getroffen werden. Es unterliegt der Sorgfaltspflicht des Betreibers der Maschine, diese Maßnahmen zu planen und ihre Ausführung zu kontrollieren.

Der Betreiber muss insbesondere sicherstellen, dass

- die Komponenten nur bestimmungsgemäß verwendet werden (vgl. hierzu Kapitel 2 Produktbeschreibung),
- die Komponenten nur in einwandfreiem, funktionstüchtigem Zustand betrieben werden und regelmäßig auf ihre Funktionstüchtigkeit überprüft werden,
- die Betriebsanleitung stets in einem leserlichen Zustand und vollständig am Einsatzort der Komponenten zur Verfügung steht,
- nur ausreichend qualifiziertes und autorisiertes Personal die Komponenten in Betrieb nimmt, wartet und repariert,
- dieses Personal regelmäßig in allen zutreffenden Fragen von Arbeitssicherheit und Umweltschutz unterwiesen wird, sowie die Betriebsanleitung und insbesondere die darin enthaltenen Sicherheitshinweise kennt.
- die Komponenten nicht einem anderen starken Magnetfeld ausgesetzt sind.

8.1 Bestimmungsgemäße Verwendung

Die Komponenten sind zum Anbau an elektrische Maschinen insbesondere Elektromotoren bestimmt und für den Einsatz in gewerblichen oder industriellen Anlagen vorgesehen. Der Einsatz im Ex/Schlagwetter- Bereich ist verboten. Die Komponenten sind entsprechend der in der Betriebsanleitung dargestellten Einsatzbedingungen zu betreiben. Die Komponenten dürfen nicht über die Leistungsgrenze hinaus betrieben werden.

8.2 Allgemeine Sicherheitshinweise

Angebaute Bremsen haben gefährliche, spannungsführende und rotierende Teile sowie möglicherweise heiße Oberflächen. Alle Arbeiten zum Transport, Anschluss, zur Inbetriebnahme und regelmäßige Instandhaltung von qualifiziertem, verantwortlichem Fachpersonal nach EN 50110-1, EN IEC 60364-1 auszuführen. Unsachgemäßes Verhalten kann schwere Personen- und Sachschäden verursachen. Überall dort, wo auf Sondermaßnahmen und Rücksprache mit dem Hersteller verwiesen wird, sollte dies bereits bei der Projektierung der Anlage erfolgen. Bei Unklarheiten sind Drehmomente und deren Schwankung, Einbausituation, Verschleiß und Verschleißreserve, Schaltarbeit, Einlaufbedingungen, Lüftbereich, Umweltbedingungen und dergleichen im Voraus mit dem Hersteller der Komponenten abzustimmen. Ohne Abstimmung mit Kendrion (Villingen) dürfen keine Nachrüstungen, Umbauten oder Veränderungen an den Komponenten vorgenommen werden. Je nach Anwendungsfall sind die Unfallverhütungsvorschriften entsprechenden zu beachten. Die Komponenten "Sicherheitsbremsen" in dem Sinne, als dass nicht durch unbeeinflussbare Störfaktoren eine Drehmomentreduzierung auftreten kann.

8.2.1 Projektierung

Die zulässige Anzahl von Schaltungen/h und die max. Schaltarbeit pro Schaltung, besonders beim Einrichten von Maschinen und Anlagen (Tippbetrieb), It. Technische Daten sind unbedingt zu beachten. Bei Nichtbeachtung kann die Bremswirkung irreversibel reduziert werden und es kann zu Funktionsbeeinträchtigungen kommen. Die Nennbetriebsbedingungen beziehen sich auf die DIN VDE 0580. Die Schutzart auf die EN 60529. Bei Abweichungen müssen evtl. Sondermaßnahmen mit dem Hersteller abgestimmt werden. Bei Senkrechtlauf ist Rückfrage beim Hersteller erforderlich. Bei Temperaturen unter -5°C und längeren Stillstandszeiten ohne Bestromung ist ein Festfrieren des Lamellenpakets nicht auszuschließen. In diesem Fall sind Sondermaßnahmen nach Rücksprache mit dem Hersteller erforderlich.

8.2.2 Inbetriebnahme

Die Komponenten dürfen nicht in Betrieb genommen werden, wenn

- die Leitungsanschlüsse beschädigt sind,
- das Magnetgehäuse oder die Ummantelung der Erregerwicklung Beschädigungen aufweist,
- der Verdacht auf Defekte besteht.

8.2.3 Montage

Die Komponenten dürfen nur an Spannungsart und Spannungswert gemäß Typenschild (Leistungsschild) angeschlossen werden. Bei An- bzw. Einbau muss eine ausreichende Wärmeabfuhr sichergestellt sein. Zur Vermeidung unzulässiger Ausschalt-Überspannungen und sonstiger Spannungsspitzen sind geeignete Schutzmaßnahmen vorzusehen. Das Magnetfeld der Komponenten kann zu Störungen außerhalb der Bremse und bei ungünstigen Anbaubedingungen zu Rückwirkungen auf die Komponente führen. Im Zweifel sind die Anbaubedingungen mit dem Hersteller der Komponenten abzustimmen.

Um die Gefährdung von Personen, Haustieren oder Gütern infolge

- mittelbarer oder unmittelbarer Einwirkung elektromagnetischer Felder,
- Erwärmung der Komponenten,
- bewegter Teile

auszuschließen, sind vom Anwender geeignete Maßnahmen (DIN 31000; DIN VDE 0100-420) durchzuführen.

8.2.4 Betrieb/Gebrauch

Die stromführenden Teile, wie z.B. Steckkontakte oder Erregerwicklung dürfen nicht mit Wasser in Berührung kommen. Die Leitungsanschlüsse der Komponenten dürfen mechanisch nicht belastet (Ziehen, Quetschen, etc.) werden. Die Komponenten dürfen an den Reibflächen der Reibelemente (Innen- und Außenlamellen) nicht mit Öl, Fett oder sonstigen Flüssigkeiten in Berührung kommen, sonst fällt das Drehmoment stark ab und kann durch Reinigungsmaßnahmen nicht auf den ursprünglichen Wert zurückgeführt werden. Der Verschleiß der Bremse und der damit verbundene Drehmomentabfall bei Federdruck-Lamellenbremsen muss bei der der Maschine bzw. Anlage berücksichtigt werden. Aufgrund Umgebungsbedingungen ist die Funktionstüchtigkeit der Komponenten in den individuellen Anwendungsfällen zu prüfen. In Einsatzfällen bei denen die Bremse nur sehr geringe Reibarbeit verrichten muss, kann das Drehmoment abfallen. In solchen Fällen ist vom Anwender dafür Sorge zu tragen, dass die Bremse gelegentlich ausreichend Reibarbeit verrichtet. Bei Betrieb der Bremse als reine Haltebremse ohne Reibarbeit ist mit dem Hersteller Rücksprache zu halten. Bei Bremsen mit einer Handlüftung darf der Handlüftbügel nur bis zum Erreichen der Lüftstellung betätigt werden, da sonst die Gefahr einer Verformung oder Bruch besteht.

Achtung:

Bei Betrieb der Komponente darf die Spulentemperatur die zulässige Grenztemperatur für die verwendeten Isolierstoffe der spezifizierten "Thermischen Klasse" (siehe Tab. 31/1) nicht überschreiten. Eine schnelle Abkühlung der Erregerwicklung (Spule) z.B. durch Spülluft ist nicht zulässig. Der zulässige Bereich für die relative Luftfeuchte (siehe Tab. 33/1) muss eingehalten werden.

Hinweis:

Der maximale Luftspalt s_{max} (siehe Tab. 31/1, Technische Daten) darf über die gesamte Lebensdauer der Bremse nicht überschritten werden (siehe hierzu auch Kapitel 4 Wartung).

8.2.5 Wartung, Reparatur und Austausch

Wartung, Reparaturen und der Austausch von Komponenten dürfen nur von Fachkräften gemäß EN 50110-1, EN 50110-2 bzw. IEC 60364-1) durchgeführt werden. Durch unsachgemäß ausgeführte Reparaturen können erhebliche Sach- oder Personenschäden entstehen. Bei jeder Wartung ist stets darauf zu achten, dass die Komponenten nicht unter Spannung stehen.

8.3 Verwendete Zeichen für Sicherheitshinweise

Personen- und Sachschäd Zeichen und Signalwort		den Warnt vor	Mögliche Folgen			
	Gefahr	einer unmittelbar drohenden Gefahr	Tod oder schwerste Verletzungen			
	Warnung	möglichen, sehr gefährlichen Situationen	Tod oder schwerste Verletzungen			
<u> </u>	Vorsicht	möglichen, gefährlichen Situationen	leichte oder geringfügige Verletzungen			
	Achtung	möglichen Sachschäden	Beschädigung der Komponente oder der Umgebung			
	Hinweise und Informationen Zeichen und Signalwort Gibt Hinweise zum					
Zeichen u	nu Signalwort	Gibt Hinweise zum				
i	Hinweis	sicheren Betrieb und der Handhabung der Komponente				

9. Definitionen der verwendeten Ausdrücke

(Basis: DIN VDE 0580:2011-11, Auszug)

Das Schaltmoment M1 ist das bei schlupfender Bremse bzw. Kupplung im Wellenstrang

wirkende Drehmoment.

Das Nennmoment M₂ ist das vom Hersteller dem Gerät oder Komponente zur Bezeichnung

oder Identifizierung zugeordnete Schaltmoment. Das Nennmoment M_2 ist der gemittelte Wert aus mindestens 3 Messungen des maximal auftretenden Schaltmoments M_1 nach Abklingen des Einschwing-

vorganges.

Das übertragbare Drehmoment M4 ist das größte Drehmoment, mit dem die geschlossene Bremse bzw.

Kupplung ohne Eintreten von Schlupf belastet werden kann.

Das Restmoment M₅ ist das über die geöffnete Bremse bzw. Kupplung noch weitergeleitete

Drehmoment.

Das Lastmoment M₀ ist das am Antrieb der geschlossenen Bremse bzw. Kupplung wirkende

Drehmoment, das sich aus dem Leistungsbedarf der angetriebenen

Maschinen für die jeweils betrachtete Drehzahl ergibt.

Die Schaltarbeit W einer Bremse bzw. Kupplung ist die infolge eines Schaltvorganges in der

Bremse bzw. Kupplung durch Reibung erzeugte Wärme.

Die Höchst-Schaltarbeit W_{max} ist die Schaltarbeit, mit der die Bremse bzw. Kupplung belastet werden

darf.

Die Schaltleistung P einer Kupplung ist die in Wärme umgesetzte Schaltarbeit je Zeiteinheit.

Die Höchst-Schaltleistung P_{max} ist die in Wärme umgesetzte zulässige Schaltarbeit je Zeiteinheit.

Die Einschaltdauer t₅ ist die Zeit, welche zwischen dem Einschalten und dem Ausschalten des

Stromes liegt.

Die stromlose Pause te ist die Zeit, welche zwischen dem Ausschalten und dem

Wiedereinschalten des Stromes liegt.

Die Spieldauer t₇ ist die Summe aus Einschaltdauer und stromloser Pause.

Die relative Einschaltdauer ist das Verhältnis von Einschaltdauer zu Spieldauer, in Prozenten

ausgedrückt (%ED).

Das Arbeitsspiel umfasst einen vollständigen Ein- und Ausschaltvorgang.

Die Schalthäufigkeit Z ist die Anzahl der gleichmäßig über eine Stunde verteilten Arbeitsspiele.

Der Ansprechverzug beim Einkuppeln t₁₁ ist die Zeit vom Ausschalten des Stromes (bei öffnendem System) bzw.

vom Einschalten des Stromes (bei schließendem System) bis zum

Beginn des Drehmomentanstieges.

Die Anstiegszeit t₁₂ ist die Zeit von Beginn des Drehmomentanstiegs bis zum Erreichen von

 $90\% \ des \ Nennmoments \ M_2.$

Die Einkuppelzeit t₁ ist die Summe aus Ansprechverzug t₁₁ und Anstiegszeit t₁₂.

Der Ansprechverzug beim Trennen t₂₁ ist die Zeit vom Einschalten des Stromes (bei öffnendem System) bzw.

vom Ausschalten des Stromes (bei schließendem System) bis zum

Beginn des Drehmomentabfalls.

Die Abfallzeit t22 ist die Zeit vom Beginn des Drehmomentabfalls bis zum Erreichen von

10% des Nennmoments M_2 .

Die Trennzeit t2 ist die Summe aus Ansprechverzug t21 und Abfallzeit t22.

Die Rutschzeit t₃ ist die Zeit vom Beginn des Drehmomentanstiegs bis zum Abschluss

des Bremsvorganges bei Bremsen bzw. bis zum Erreichen des

Synchronisierungsmoments M_3 bei Kupplungen.

Die Einschaltzeit t₄ ist die Summe aus Ansprechverzug t₁₁ und Rutschzeit t₃ (Brems- bzw.

Beschleunigungszeit).

Der betriebswarme Zustand ist der Zustand, bei dem die Beharrungstemperatur erreicht wird. Die

Temperatur des betriebswarmen Zustandes ist die nach DIN VDE 0580 ermittelte Übertemperatur, vermehrt um die Umgebungstemperatur. Wenn nichts anderes angegeben ist, gilt als Umgebungstemperatur eine

Temperatur von 35°C.

Die Übertemperatur Δ9₃₁ ist der Unterschied zwischen der Temperatur des elektromagnetischen Gerätes bzw. Komponente oder eines Teiles davon und der

Umgebungstemperatur.

Die Grenztemperaturen von Isolierstoffen für Wicklungen entsprechen der DIN VDE 0580. Die Zuordnung der

Isolierstoffe zu den Wärmeklassen erfolgt nach DIN IEC 60085.

Die Nennspannung U_N ist die vom Hersteller dem Gerät oder Komponente zur Bezeichnung

oder Identifizierung zugeordnete Versorgungsspannung bei

Spannungswicklungen.

Der Bemessungsstrom I_B ist ein für die vorgegebenen Betriebsbedingungen vom Hersteller

festgelegter Strom. Wird nichts anderes angegeben, bezieht er sich auf Nennspannung, 20°C Wicklungstemperatur und gegebenenfalls auf die Nennfrequenz bei vorgegebener Betriebsart bei Spannungswicklungen.

Die Nennleistung P_N ist ein geeigneter Wert der Leistung zur Bezeichnung und Identifizierung

des Gerätes oder der Komponente.

Die Bemessungsleistung P_B ergibt sich aus dem Bemessungsstrom bei Spannungsgeräten und

Spannungskomponenten und dem Widerstand R_{20} bei $20^{\circ}C$

Wicklungstemperatur.

10. Technische Daten

Komponente gebaut und geprüft nach DIN VDE 0580

				Größe			
	13	16	19	24	25	29	33
Bereich des Nenn- moments (Standard) M ₂ [Nm]	17-25	25-50	50-100	100-200	150-300	200-400	400-800
Max. erreichbares Nennmoment M _{2max} [Nm]	279	55	110	220	330	440	880
Restmoment M ₅ [Nm]	0,05	0,1	0,2	0,5	0,7	1	2
Max. Drehzahl n _{max} [min ⁻¹]	4500	3800	3200	3000	3000	3000	2500
Höchst-Schaltleistung (Anbau) P _{max} [kJ/h]	460	570	640	700	740	1000	1300
Höchst-Schaltleistung (Einbau) P _{max} [kJ/h]	720	930	1090	1190	1210	1700	1980
Nennleistung P _N [W]	38	60	75	109	109	185	230
Einkuppelzeit t ₁ [ms]	50 (M ₂ =25Nm)	80 (M ₂ =50Nm)	100 (M ₂ =100Nm)	200 (M ₂ =200Nm)	250 (M ₂ =300Nm	300 (M ₂ =400Nm	450 (M ₂ =800Nm
Trennzeit t ₂ [ms]	160 (M ₂ =25Nm)	200 (M ₂ =50Nm)	270 (M ₂ =100Nm)	330 (M ₂ =200Nm)	350 (M ₂ =300Nm	480 (M ₂ =400Nm	600 (M ₂ =800Nm
Trägheitsmoment Mitnehmer u. Innen- lamellen J [kgcm²]	6,25	20	40	95	135	250	650
Gewicht m [kg]	5,4	10,2	14,8	31,1	32,6	58,3	93,4
Neuluftspalt s [mm]	0,5 ^{+0,2}	0,6+0,2	0,6+0,3	0,7 ^{+0,3}	0,9+0,3	1,1+0,3	1,1+0,3
Max. Luftspalt s _{max} ²⁾ [mm]	1	1,7	1,7	1,8	1,8	2,3	2,5
Standard-Nennspannung [VDC]	24, 102, 178						
Thermische Klasse	F						
Verschmutzungsgrad	2						
Schutzart	IP 54 IP 55 (bei Einbau unter der Lüfterhaube von Motoren)						
Betriebsart	Arbeitsbremse						

Tab. 31/1: Technische Daten

				Größe			
	13	16	19	24	25	29	33
Drehzahl n [min ⁻¹]	250	250	250	100	80	80	80
Einschaltdauer t ₅ [s]	4	8	14	10	10	10	10
Stromlose Pause t ₆ [s]	1	1	1	1	1	1	1
Einlaufdauer t _{ges} [min]	ca. 2						

Tab. 31/2: Einlaufvorgang der Federdruck-Lamellenbremse

²⁾Max. Luftspalt s_{max} bezogen auf das größte Nennmoment (Standard) und 70% des Nennstromes. Max. Luftspalt s_{max} bezogen auf das max. erreichbare Nennmoment M_{2max} nach Bedarf beim Hersteller anfragen.

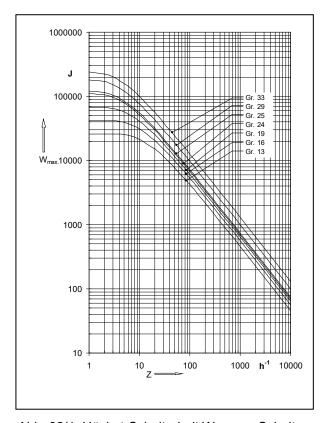


Abb. 32/1: Höchst-Schaltarbeit W_{max} pro Schaltung in Abhängigkeit von der stündlichen Schaltzahl Z (Anbau; Werte gelten für n=1500 min⁻¹)

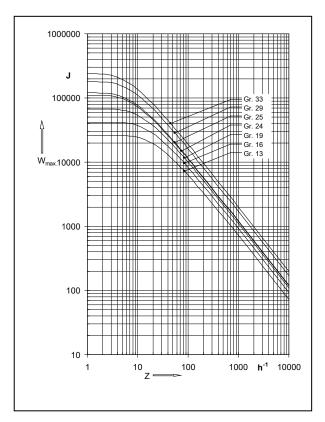


Abb. 32/2: Höchst-Schaltarbeit W_{max} pro Schaltung in Abhängigkeit von der stündlichen Schaltzahl Z (Einbau; Werte gelten für n=1500 min⁻¹)

	Technische Daten
	250VAC, 25A (ohmsche Last)
Schaltvermögen	250VAC, 8A (induktive Last, $\cos \varphi = 0.6$)
Schaltvermogen	24 VDC, 10A (ohmsche Last)
	24VDC, 6A (L/R = 50ms)
Min. Schaltleistung	12VDC, 10mA
Mech. Lebensdauer [Schaltungen]	3 x 10 ⁷
Kontaktausführung	Schließer
Temperaturbereich [°C]	-20 bis +80
Schutzart	IP 67

Tab. 32/1: Technische Daten Mikroschalter (nur bei Bremsen mit Mikroschalter)

	Nennbetriebsbedingungen
Spannungstoleranz der Nennspannung	±10%
Frequenzbereich	±1% der Nennfrequenz
Umgebungstemperatur 9 ₁₃ [°C]	-5 bis +35
Relative Luftfeuchte	30% bis 80% im Umgebungstemperaturbereich
Weitere klimatische Umweltbedingungen	3Z2 und 3Z4 nach EN 60721-3-3
Mechanische Umweltbedingungen	3M8 nach EN 60721-3-3
Biologische Umweltbedingungen	3B1 nach EN 60721-3-3
Mechanische aktive Stoffe	3S2 nach EN 60721-3-3
Chemisch aktive Stoffe	3C1 nach EN 60721-3-3
Aufstellhöhe	bis 2000m über N.N.

Tab. 33/1: Nennbetriebsbedingungen für Federdruck-Lamellenbremse

Erläuterungen zu den Technischen Daten:

W_{max} (Höchst-Schaltarbeit) ist die Schaltarbeit, die bei Bremsvorgängen aus max. 1500min⁻¹ nicht überschritten werden darf. Bremsvorgänge aus Drehzahlen > 1500min⁻¹ verringern die max. zulässige Schaltarbeit pro Schaltung erheblich. In diesem Fall ist Rücksprache mit dem Hersteller erforderlich. Die Höchst-Schaltleistung P_{max} ist die stündliche in der Bremse umsetzbare Schaltarbeit W. Bei Anwendungen mit einer stündlichen Schaltzahl Z>1 ist Abb. 32/1 bzw. Abb. 32/2 (W_{max} in Abhängigkeit der stündlichen Schaltzahl Z) zu verwenden. Die Werte P_{max} und W_{max} sind Richtwerte. Sie gelten für den Einbau der Bremse zwischen B-Lagerschild und Lüfter des Motors bzw. Anbau an Motoren. Die Zeiten gelten bei gleichstromseitiger Schaltung, betriebswarmen Zustand, Nennspannung und Neuluftspalt. Die angegebenen Werte sind Mittelwerte, die einer Streuung unterliegen. Bei wechselstromseitiger Schaltung der Bremse erhöht sich die Einkuppelzeit t₁ wesentlich. Die angegebenen Nennmomente M₂ kennzeichnen die Komponenten in ihrem Momentenniveau. Je nach Anwendungsfall weicht das Schaltmoment M₁ bzw. das übertragbare Drehmoment M₄ von den angegebenen Werten für das Nennmoment M₂ ab. Die Werte für das Schaltmoment M₁ sind abhängig von der Drehzahl. Bei öligen, fettigen oder stark verunreinigten Reibflächen (Innenlamellen bzw. Außenlamellen) kann das übertragbare Drehmoment M₄ bzw. das Schaltmoment M₁ abfallen. Alle technischen Daten gelten nach Einlauf (siehe Tab. 31/2) der Bremse

<u>Bitte beachten:</u> 70% des Nennstromes stellt sich bei Betrieb mit Nennspannung und 130°C Wicklungstemperatur der Federdruck-Lamellenbremse ein.

Beim Betrieb der Federdruck-Lamellenbremse sind die Nennbetriebsbedingungen nach Tab. 33/1 zu beachten und einzuhalten. Bitte **Datenblatt CLASSIC LINE** und Offertzeichnung der entsprechenden Typen beachten.

Konstruktionsänderungen vorbehalten!

11. Artikelnummer und Typen- bzw. Komponentennummer

Die für die Bestellung und zur Beschreibung der eindeutigen Ausführung der Bremse relevante Artikelnummer, setzt sich aus Typen- bzw. Komponentennummer der Bremse und einer vierstelligen Variantennummer zusammen. Durch die vierstellige Variantennummer werden die möglichen Ausführungsvarianten der Bremse eindeutig beschrieben.

Beispiel:

Typen- und Komponentennummer: 77 100.25A00 Variantennummer: 0003

Artikelnummer: 77 100.25A00-0003

12. Fachwerkstätten für Reparaturarbeiten

Kendrion (Villingen) GmbH

Wilhelm-Binder Straße 4-6 78048 Villingen-Schwenningen

Tel. +49 7721 877-1417 Fax +49 7721 877-1462

13. Änderungshistorie

Ausgabedatum	Änderungen
11.04.2002	Neu.
14.04.2003	Betriebsanleitung inhaltlich überarbeitet.
13.01.2004	Betriebsanleitung inhaltlich überarbeitet.
15.12.2004	Betriebsanleitung inhaltlich überarbeitet.
30.12.2009	Betriebsanleitung inhaltlich überarbeitet.
25.04.2016	Betriebsanleitung inhaltlich überarbeitet.
13.03.2020	Betriebsanleitung inhaltlich überarbeitet. Layout (Design) der Betriebsanleitung geändert.

Wilhelm-Binder-Straße 4-6 78048 Villingen-Schwenningen Germany

Tel: +49 7721 877-1417 Fax:+49 7721 877-1462

sales-ids@kendrion.com www.kendrion.com

