KENDRION

Our brakes – perfect for your safe application

KENDRION Industrial Brakes – this stands for excellent service and smart innovation, which we consistently use for the benefit of our customers:

Strong know-how

Our specialists develop pioneering permanent magnet and springapplied brakes. On the one hand, they use the bundled knowhow in the team; on the other hand, they maintain a dialogue with customers in order to always keep trends and requirements in mind. With INTORQ as a new addition to KENDRION, we have once again consistently expanded our range of spring-applied brakes and clutches for you. So we can find the right solution for every requirement.

Complete product portfolio

Electromagnetic brakes and clutches as well as perfectly matched accessories: With us you will find an exceptionally large selection of quickly available off-the-shelf products that can be put together in a modular system and the best expertise for customer-specific solutions.

Dynamic innovative power

Worldwide, more than 50 specialists in our research and development department work in agile teams to create convincing product solutions for tomorrow.

In-depth market knowledge

We are very familiar with our focus markets – thanks to in-depth experience and research, but also thanks to long-standing customer relationships based on partnership at eye level.

International power

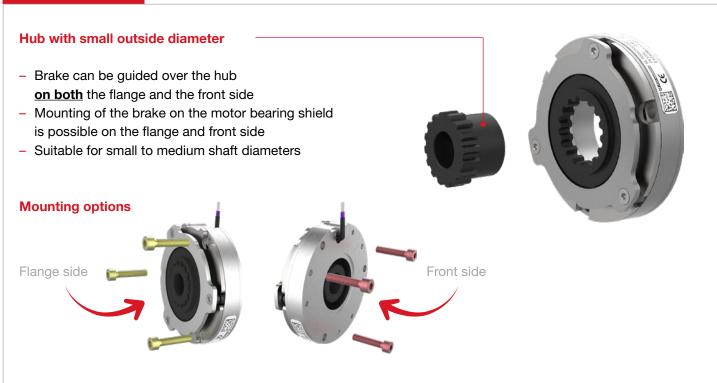
Committed and competent employees, production sites in Germany, United States and India as well as a large number of certified sales partners all over the world make us a strong partner for you!

The Servo Slim Line

On the point

- Fail-safe spring-applied brake
- Holding brake with emergency stop function
- A total of 7 different sizes available
- Torque range from 0.27 Nm to 11 Nm
- Standard temperature range from -10°C to +100°C

Suitable for the use of:


Brake types

The two standard brake versions, Type 500 and Type 502, were specially developed for integration into compact hollow-shaft motors. Type 702 is particularly well suited for use in AGV wheel drives. Thanks to its space-saving design, the Servo Slim Line is especially suitable for applications where optimal use of the installation space is essential. We would be happy to discuss your individual requirements and develop a customized solution.

Brake type 500

Brake type 502 / 702

Hub types

The hub is the connecting element between the motor shaft and the brake. The hubs of the Servo Slim Line offer various options in terms of hub length, hub diameter, keyway and noise reduction design. The hub type can be selected based on the specific installation conditions.

Hub for brake type 500

Hub with large outside diameter

- Short hub for press-fit connection
- Large outside diameter
- Short hub with keyway
- Large outside diameter

Also available with innovative noise reduction function. Get in touch with us.

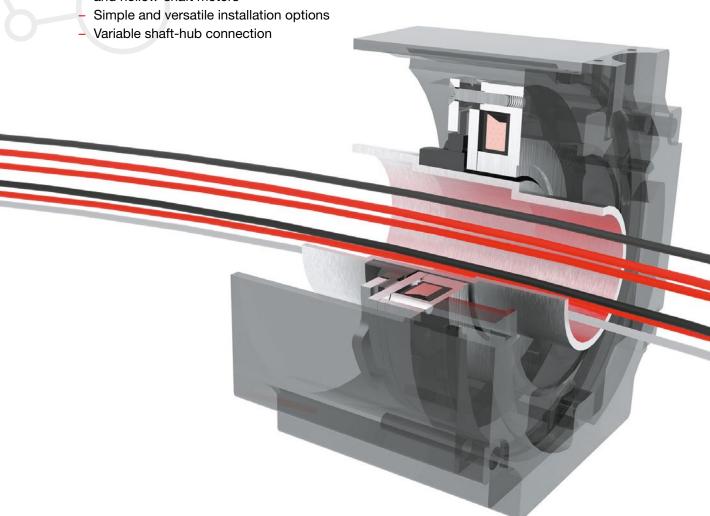
Hub for brake type 502 / 702

Hub with small outside diameter

- Long hub for press-fit connection
- Small outside diameter
- Special version with set screws available on request
- Long hub with keyway
- Small outside diameter
- Special version with set screws available on request

Also available with innovative noise reduction function. Get in touch with us.

Maximum safety with minimum space requirements


Safety aspects are crucial issues in robot applications. After all, uncontrolled movements caused by control system or power failure must be avoided to prevent harm or damage to people and property.

For decades Kendrion has been supplying brakes for industrial robots with loads higher than 20 kg. In order to also serve the rapidly growing market for smaller robots, Kendrion has developed the new flat spring-applied brake referred to as "Servo Slim Line".

Kendrion's Servo Slim Line flat spring-applied brake is perfectly tailored to the specific requirements in robotics and is designed for applications with payloads of up to about 20 kg. The slim single-disc brakes are flatter and lighter than the market standard in relation to their power density. Owing to their large inside diameter, they are ideal for hollow-shaft drives. These features make them the perfect choice for lightweight robots equipped with incorporated drives.

Ideal for restricted space applications

 Designed for integrated installation in robot joints and hollow-shaft motors

Technical highlights

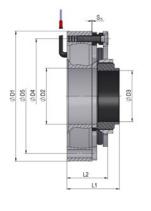
- High power density due to patented air gap adjustment
- Guaranteed minimum torque over entire life time
- Slim and space-saving design
- Flexible cable routing
- Fast opening and closing times
- Low weight

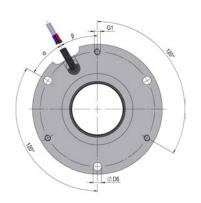
Technical details

Product code / Types	SL 500A00 ; SL 502A00
Operation mode	Holding brake with emergency stop function
Standard nominal voltage	24 VDC sizes 04 to 12 12 VDC size 03 (other ratings available on request)
Protection class	IP00
Thermal class	F (155°C)
Transmittable torque range	0.27 Nm to 11 Nm
Duty cycle	100% ED
Nominal backlash	1°
Ambient temperature	-10°C to +100°C
Note	The general information on specification sheets and the relevant operating instructions must be observed. Subject to change without notice.

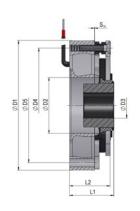
Brake size	Brak type		Min. transmit- table torque ¹⁾	Static nominal torque ²⁾	Nominal power	Max. rotation speed ³⁾	Max. emergency stop rota- tion speed	Maximum switching energy per ES (Z=1)	Number of emer- gency stops	Switching times Closing time ⁴⁾ Opening time		Max. inertia friction disc incl. hub	Max. weight brake incl. hub
			M _{4min} [Nm]	M _{4N} [Nm]	P _N [W]	n _{max} [min ⁻¹]	n [min ⁻¹]	W _{max} [J]	Z _{ges}	t _{c1} [ms]	t _o [ms]	J [kgcm²]	m [kg]
03	500	-	0.27 5)	0.38 5)	5.8	8000	6000	0.5		5	25	0.002	0.1
04	500	502	0.3	0.4	7.1	8000	6000	5		10	30	0.005	0.12
05	500	502	0.6	0.7	10.3	8000	5000	20		8	30	0.02	0.15
07	500	502	1.7	2.4	11.4	8000	4000	50	200 (Standard)	9	45	0.09	0.32
09	500	-	4	5	14	6000	3000	250		15	100	0.5	0.53
10	500	-	5	6.5	20	6000	3000	300		15	60	1.3	0.68
12	500	-	11	15	27.2	5000	2500	800		30	160	2.2	1.7

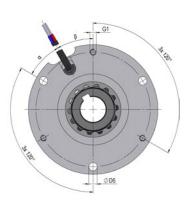
 ¹⁾ Minimum guaranteed static torque over lifetime (factory grinded-in and torque tested brakes)
 ²⁾ Identification of the transmittable (static) torque level
 ³⁾ Without emergency stop


⁴⁾ Measured with parallel varistor (fast turn-off)

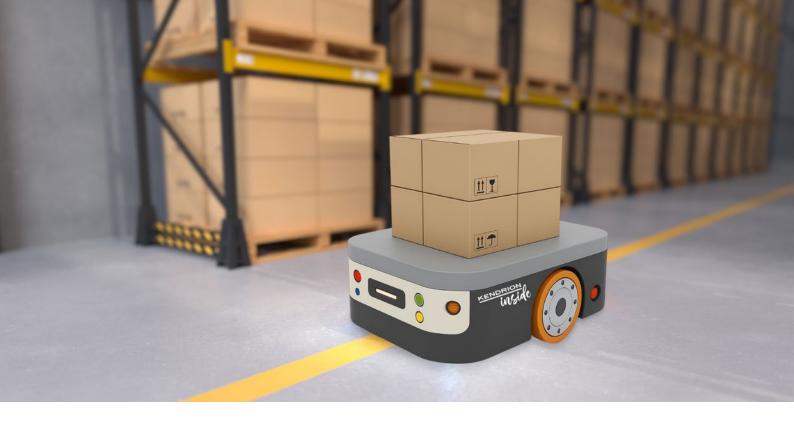

⁵⁾ Overexcitation mode 24/12 V

Dimensions


Brake size	Brak type		Ø D ₁ [mm]	Ø D ₂ [mm]				ø [m	D _s m]				Ø D ₄ [mm]	Ø D₅ [mm]	D ₆ [mm]	G ₁ [mm]	α [°]	β [°]		m]	L ₂ [mm]	S _N 1) [mm]
						Туре	500			Туре	502											
					Press fit 2)	;-	Keyw	ay ³⁾	Press fit ²⁾	S-	Keyw	/ay ³⁾							Type 500	Type 502		
					Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.										
03	500	-	32	9	6 ^{H7}	8 H7	6 ^{H7}	7 H7	-	-	-	-	28	28	2 x 2.3	-	120	-	16.3	-	16	0.08 ±0.02
04	500	502	38	11.5	6 ^{H7}	10 H7	6 ^{H7}	9 ^{H7}	6 ^{H7}	6 H7	-	-	32.6	34.5	2 x 2.3	-	60	-	17	16.5	16	0.08 ±0.02
05	500	502	51	22	8 H7	20 H7	8 H7	13 H7	6 H7	12 H7	6 H7	10 H7	45	45	3 x 3.3	3 x M2.5	30	30	20.6	17.4	16	0.08 ±0.02
07	500	502	69	30	9 H7	25 H7	9 H7	20 H7	8 H7	20 H7	8 H7	13 H7	61.5	61.5	3 x 4.4	3 x M4	30	60	23.8	20	18	0.09 ±0.02
09	500	-	86	43	20 H7	40 H7	20 H7	36 H7	-	-	-	-	78.5	78.5	3 x 4.4	3 x M4	30	60	28	-	21	0.12 ±0.02
10	500	-	105	58	30 H7	55 H7	30 H7	44 H7	-	-	-	-	97	97	3 x 4.4	3 x M4	30	60	28	-	21	0.15 +0.02 / -0.03
12	500	-	127	63	30 H7	60 H7	30 H7	50 H7	-	-	-	-	116	116	3 x 4.4	3 x M4	45	30	35.5	-	29.3	0.17 +0.02 / -0.03


Brake type 500

Brake type 502



Can't find the right brake? Contact us!

¹⁾ Nominal air gap
2) Press-fit connection on request

³⁾ Keyway on request (to DIN 6885-1)

Maximum endurance and precision for AGV wheel drives

In the world of automated logistics, the efficient utilization of deployed autonomous transport systems is crucial. The technical limits are being pushed further and further. Safety brakes in wheel drives play a particularly important role in this.

An AGV (Automated Guided Vehicle) is a driverless transport vehicle that autonomously moves goods in warehouses, production facilities, or logistics centers. It navigates using sensors and increases efficiency and precision by automating manual transport tasks. In hazardous situations, the AGV must come to a safe stop – this is where our Servo Slim Line spring-applied brake comes into play.

It is specially designed for AGV wheel drives and, thanks to its slim design, is ideal for tight installation spaces. Our brakes are tested under realistic AGV conditions and can be adapted to customer-specific load profiles. If the standard brake does not fit, we quickly and easily develop a suitable solution. Get in touch with us!

Optimal for integration in AGV wheel drives

- Designed for integrated installation in AGV wheel drives
- Simple and versatile installation options
- Engineered for long service life under varying load profiles

Technical highlights

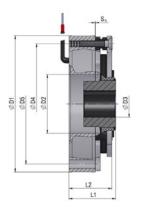
- Energy-efficient and battery-friendly thanks to voltage reduction
- Slim and space-saving design
- Optimized torque for dynamic braking operations
- Extended service life due to highperformance friction lining
- Designed for load profiles with low, medium, and high intensity
- Low weight

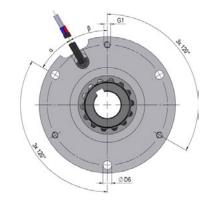
Technical details

Product code / Types	SL 702A00				
Operation mode	Holding brake with				
	emergency stop function				
Standard nominal voltage	48 VDC (Over excitation voltage)				
	24 VDC (Holding voltage)				
	(other ratings available on request)				
Protection class	IP00				
Thermal class	F (155°C)				
Transmittable torque range	0.8 Nm to 4.4 Nm				
Duty cycle	100% ED				
Nominal backlash	1°				
Ambient temperature	-10°C to +100°C				
Note	The general information on specifica-				
	tion sheets and the relevant operating				
	instructions must be observed. Subject				
	to change without notice.				

Brake size	Brake type	Static nominal torque 1)	Dynamic nominal torque ²⁾	Nominal power	Max. rotation speed ³⁾	Max. emergency stop rota-	Maximum switching energy per	Number of emergen- cy stops ⁵⁾	Switching	g times	Max. inertia friction disc incl. hub	Max. weight brake incl. hub
					.,	tion speed ⁵⁾	ES p (Z=1) 5)		Closing time ⁴⁾	Opening time		
		M _{4N} [Nm]	M _{2N} [Nm]	P _N [W]	n _{max} [min ⁻¹]	n [min ⁻¹]	W _{max} [J]	Z _{ges}	t _{c1} [ms]	t _o [ms]	J [kgcm²]	m [kg]
05	702	0.8	0.8	10.3	8000	5000	500		8	30	0.02	0.15
07	702	2.4	2.4	11.4	8000	5000	1000	840	9	45	0.09	0.32
09	702	4.4	4.4	14	6000	5000	2000		15	50	0.5	0.53

³⁾ Without emergency stop
4) Measured with parallel varistor (fast turn-off)
5) Overexcitation mode 48/24 V according load profile


Brake size	Brake type	Ø D ₁ [mm]	Ø D ₂ [mm]		Тур	702		Ø D₄ [mm]	Ø D ₅ [mm]	D ₆ [mm]	G ₁ [mm]	α [°]	β [°]	L _i [mm]	L ₂ [mm]	S _N 1) [mm]
				Press- fit ²⁾		Keywa	у ³⁾									
				Min.	Max.	Min.	Max.									
05	702	51	22	6 H7	12 H7	6 ^{H7}	10 H7	45	45	3 x 3.3	3 x M2.5	30	30	20.6	16	0.08 ±0.02
07	702	69	30	8 H7	20 H7	8 H7	13 H7	61.5	61.5	3 x 4.4	3 x M4	30	60	23.8	18	0.09 ±0.02
09	702	86	42	14 H7	25 H7	12 H7	20 H7	78.5	78.5	3 x 4.4	3 x M4	30	60	28	22	0.12 ±0.02


¹⁾ Identification of the transmittable (static) torque level ²⁾ Identification of the switching torque level (dynamic torque)

 ¹⁾ Nominal air gap
 ²⁾ Press-fit connection on request
 ³⁾ Keyway on request (to DIN 6885-1)

Dimensions and load profile

Brake type 702

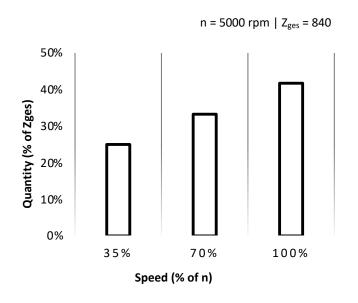
It all depends on the brake

Depending on the size and maximum permitted load unpredictable situations can occur over the lifetime of the vehicle in which the vehicle and its load must be stopped safely. Our brakes ensure that the AGV does not get out of control when braking. They are designed in such a way that a maximum dynamic braking torque is not exceeded. In accordance with our specification the user can plan the design of the braking times and distances very precisely. Of course the important holding torques of the brake are designed in such a way that a minimum value is always maintained and the AGV is held securely in the parked position.

 $W_{max} = 500J \mid Z_{ges} = 840$

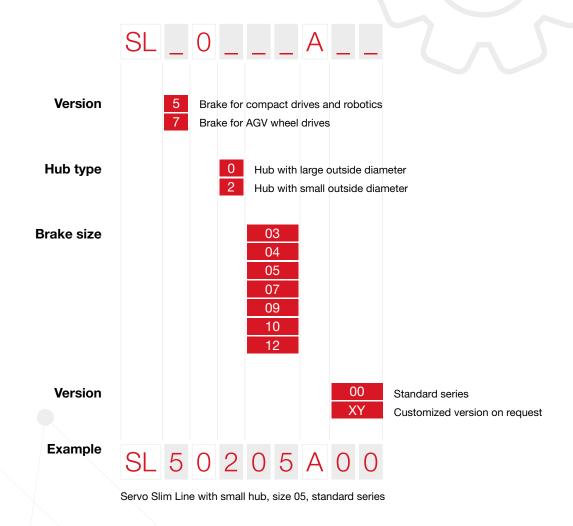
Load profile with exemplary calculation

The two diagrams show a typical load profile of an AGV. The brake must be able to handle a high number of emerge De en sp me the wa as

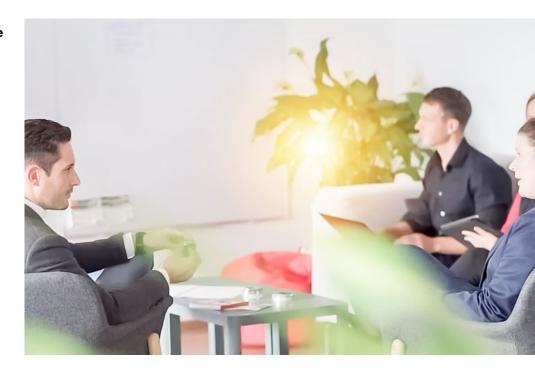

4% 4% 8% 11% 18% 30% 40% 50% 68%100 Braking energy (% of Wmax)	peed (n) of the brake rotor. The used brake lining must neet the highest requirements. The magnet system and ne control of the brake must also be designed in such a vay that the maximum possible air gap can be achieved, s this is directly related to the achievable service life.	00 manutity 10% 6% 4%	4% 8				8%100	%
---	--	-----------------------	------	--	--	--	-------	---

20%

18%


Total energy [kJ]	Braking energy [J]	Quantity	n [rpm]
1.4	20	70	1750
6.3	90	70	3517
10.5	150	70	3517
28	200	140	5000
35	250	140	3517
47.6	340	140	5000
35	500	70	5000
3.85	55	70	1750
2.8	40	70	1750

Order code


Our order code helps you specify the desired brake variant. The code is composed of the hub type, brake size and brake version.

Customized solutions – tailored exactly to your needs

Automation solutions have become an indispensable part of industry and everyday life. In this context, it is often the brakes that ensure safety: They hold loads and brake reliably in an emergency.

Just as automation continues to evolve, brakes must also face higher demands – forward-looking products are in demand. At the same time, quality and safety must be unconditionally guaranteed. This is a challenge that Kendrion Industrial Brakes meets with passion and care.

When it comes to developing customer-specific solutions, we have three aces up our sleeves:

- With our **new agile organization**, we respond much faster to customer requests.
- Our modularly developed products enable new configurations without complete redevelopment.
- The global structure of our organization bundles competencies and ensures valuable knowledge transfer.

This makes us a competent and reliable partner for our customers – starting with industry-savvy consulting, through product development with practical experience, to uncompromising quality assurance.

We will find the solution that suits you best!

KENDRION

Kendrion (Villingen) GmbH

Wilhelm-Binder-Strasse 4-6 78048 Villingen-Schwenningen Germany

T +49 7721 877-1417 sales-villingen-ib@kendrion.com

www.kendrion.com

© KENDRION 19.11.2025

PRECISION. SAFETY. MOTION.